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Abstract. Accurately discriminating progressive stages of Alzheimer’s
Disease (AD) is crucial for early diagnosis and prevention. It often in-
volves multiple imaging modalities to understand the complex pathology
of AD, however, acquiring a complete set of images is challenging due
to high cost and burden for subjects. In the end, missing data become
inevitable which lead to limited sample-size and decrease in precision
in downstream analyses. To tackle this challenge, we introduce a holis-
tic imaging feature imputation method that enables to leverage diverse
imaging features while retaining all subjects. The proposed method com-
prises two networks: 1) An encoder to extract modality-independent em-
beddings and 2) A decoder to reconstruct the original measures condi-
tioned on their imaging modalities. The encoder includes a novel ordinal
contrastive loss, which aligns samples in the embedding space according
to the progression of AD. We also maximize modality-wise coherence of
embeddings within each subject, in conjunction with domain adversar-
ial training algorithms, to further enhance alignment between different
imaging modalities. The proposed method promotes our holistic imag-
ing feature imputation across various modalities in the shared embedding
space. In the experiments, we show that our networks deliver favorable
results for statistical analysis and classification against imputation base-
lines with Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

1 Introduction

Understanding the progression of neurodegenerative disease such as Alzheimer’s
Disease (AD) often requires a complicated integration of multiple neuroimaging
modalities. Advanced imaging techniques such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) provide insights into the struc-
tural, functional and molecular changes in the brain associated with AD. How-
ever, in many clinical studies, it is difficult to collect a complete image set of
various imaging modalities due to cost and participant burden. In the end, sub-
jects with missing scans become inevitable that cannot be used for downstream
analyses, e.g., training a disease prediction model, and they eventually become
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discarded leading to limited sample-size. To learn robust and effective repre-
sentation to discriminate underlying patterns from progressive disease stages, it
becomes imperative to accurately impute the measures of unobserved modalities.

Recent studies [13] translate imaging scans at different levels (e.g., pixel,
voxel) by leveraging their correlations [17,7,18]. However, focusing on brain re-
gions of interest (ROIs) offers more relevant and interpretable information as
disease-specific symptoms manifest in arbitrary shapes. Region-based models
enable the extraction of localized features indicative of AD pathology, such as
hippocampal atrophy or cortical thinning [23,2,1,19]. Prioritizing these regions
enhances the sensitivity of prediction models by effectively capturing subtle
disease-specific changes. Therefore, leveraging region-based models for estimat-
ing missing scans holds promise for improving the robustness in AD classification.

When training a diagnostic model, employing Cross-entropy or Supervised
Contrastive Learning (SCL) [9] often simply groups the samples by their labels
in an embedding space. However, as each AD stage represents the ordinal disease
progression such as Control (CN), Early Mild Cognitive Impairment (EMCI),
Late MCI (LMCI) and AD, aligning the embedding along the progression contin-
uum offers two key advantages. First, it comprehensively captures the underlying
pathology from preclinical stages to full-blown AD, enriching the data represen-
tation rather than treating them entirely separate entities. Second, it enhances
the model robustness to inter-individual variability in Alzheimer’s research by
focusing on consistent pathological changes rather than individual differences in
symptom manifestation. To achieve this, we propose ordinal contrastive learning
(OCL), which dynamically adjusts the degree of repulsion and attraction among
embeddings based on their severity discrepancy informed by disease labels. Si-
multaneously, different modalities from the same individual are pulled together
to ensure personalized embeddings in the modality-agnostic embedding space.

With the OCL, we design an architecture that projects each sample to a
modality-agnostic but progress-aligned embedding space and then generates a
target measure from the embedding conditioned on a specific imaging modality.
Our goal is to holistically generate realistic data for all missing scans personalized
to each subject, accurately reflecting modality and disease characteristics with-
out exhaustively training one-to-one mapping between modalities. Key Contri-
butions: 1) Our method accurately estimates unobserved imaging measures for
individual subjects using their existing data to solidify downstream analyses. 2)
We introduce ordinal contrastive learning, which aligns samples in the embed-
ding space based on their disease severity. 3) The experiments on Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data show that our method accurately
translates data, capturing realistic information for subsequent analyses.

2 Method

In this section, we describe an unified imaging measure-to-measure transla-
tion framework for samples with missing image features. Fig. 1 illustrates the
overview of our framework, which consists of two training phases and one infer-
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Fig. 1. Illustration of our framework. (a) An encoder E is trained to extract disease
progression information across various input modalities through LDA and LOC . Addi-
tionally, E is guided to maximize the similarity of embeddings from the same subject
using LMC . (b) A decoder D is trained to reconstruct the embedding of a fixed E to
its original input under its original modality condition, utilizing LD. (c) The trained
E and D facilitate the translation of an input to the target modality when the corre-
sponding condition is provided, while preserving disease progression information.

ence phase: (a) An encoder E is trained to map data into a modality-agnostic
and disease-progression aligned embedding. (b) A decoder D, conditioned on the
source (input) modality, is trained to reconstruct the original measure from the
given embedding from (a). (c) Missing features are imputed from any existing
feature of the subject by E and D, conditioned on the target (missing) modality.

2.1 Modality-agnostic Progressive Embedding

Let us consider data X consisting of K subjects, each with Q-dimensional mea-
surements (e.g., Q ROIs) from S imaging features. The k-th subject xk ∈ RS×Q

has a diagnostic label yk ∈ {1, · · · , V } ordered by severity (e.g., CN, EMCI,
LMCI and AD), and each modality measurement is denoted as xk,s ∈ RQ. For
every k, the encoder E extracts disease progression information informed by yk
from xk,s, regardless of the modality type s. This is accomplished by integrating
three different guidance strategies as outlined below.
1) Domain Adversarial Training (LDA). We employ a domain adversarial
training strategy, which derives an embedding zk,s = E(xk,s) with E to eliminate
modality-specific information associated with s. This is achieved by a modality
classifier CDC and a gradient reversal layer [5] that reverses the sign of the
gradient between E and CDC . The modality adversarial loss LDA is defined as

LDA = J (s, CDC(E(xk,s))), (1)

where J represents a suitable loss function (e.g., Cross-entropy). Through the
gradient reversal layer, E is trained to maximize LDA, which leads to the dis-
carding of modality-specific information, while CDC learns to minimize LDA.
2) Ordinal Contrastive Learning (LOC). To accurately characterize mea-
sures of missing scans for downstream analyses, the encoder E should effectively
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Fig. 2. Comparison of supervised (left) and ordinal (right) contrastive learning: Both
approaches contrast the set of all samples from the same class as positives against
the negatives from the rest of the batch. While supervised contrastive learning repels
each negative without differentiation on labels denoted as (a) ≈ (b) ≈ (c), ordinal
contrastive learning assigns the penalizing strength based on the label distance.

extract disease progression information. E is designed to arrange each sample in
the embedding space by the orders to accurately characterize disease progression.

The OCL is initiated from supervised contrastive learning (SCL) [9] which is
briefly described below. For brevity, we omit the modality type s ∈ {1, · · · , S}
(i.e., xk,· denotes the k-th subject) as LDA removes s-specific information in
the embedding. In the context of SCL, within a batch I, let i ∈ I ≡ {1, ..., |I|}
represent the index of samples in the batch. Then, the embedding zi,· of sample
xi,· is supervised by its label yi through SCL. When P (i) ≡ {p ∈ P (i) : ŷp = ŷi}
and N(i) ≡ {n ∈ N(i) : ŷn ̸= ŷi} are the sets of indices for all positives and
negatives in the batch distinct from i each, the loss of SCL LSC is expressed as

LSC =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

p∈P (i)

exp(zi · zp/τ) +
∑

n∈N(i)

exp(zi · zn/τ) (2)

where τ ∈ R+ is a scalar temperature parameter, and |P (i)| is its cardinality.
Notice that a single τ to control the strength of separation acts similar to

classification loss, ignoring the degree of differences between each label. Consid-
ering that values of diagnostic label y ∈ {1, · · · , V } are aligned according to their
severity (e.g., i-th subject is more severe than n-th subject if yi > yn), we define
a function d(yi, yn) measuring the distance between two labels as |yi−yn|. Higher
d(yi, yn) indicates greater diagnostic differences between zi and zn. Therefore,
we make τi,n dependent on yi,· and yn,· as τ/d(i, n) to penalize greater label
distance. By setting adaptive τi,n for each zn,· and unique τi,P for every zp,·, we
formulate our ordinal contrastive loss LOC as

LOC =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τi,P )∑

q∈P (i)

exp(zi · zq/τi,P ) +
∑

n∈N(i)

exp(zi · zn/τi,n)
. (3)
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To prevent the collapse or dispersion of the embedding space, the magnitude of
gradient w.r.t positives and negatives should be the same [27]. By the gradient
analysis detailed in the supplementary material, τi,P between zi and zp is set as

τi,P =

∑
n∈N(i)

exp(zi,· · zn,·/τi,n)∑
n∈N(i)

exp(zi,· · zn,·/τi,n)/τi,n
. (4)

3) LMC (Maximize modality-wise coherence within a subject). While
LDA and LOC require only unpaired data, identifying pairs originating from the
same subject helps alignment by mapping those pairs to similar embeddings. To
maximize the coherence between modalities of the same subject, we design the
loss LMC using a similarity function sim(·, ·) (e.g., cosine similarity) as

LMC =

∑K
k=1

∑
i,j∈{1,··· ,S}

i̸=j

−δk(i, j) · sim(xk,i, xk,j)∑K
k=1

∑
i,j∈{1,··· ,S}

i̸=j

δk(i, j)
(5)

where δk(i, j) is an indicator function defined as δk(i, j) = 1 if both xk,i and xk,j

exist for subject k, and δk(i, j) = 0 otherwise. Our final loss to train E is the
combination of the three introduced losses defined as

LE = LDA + LOC + LMC (6)

where each loss term is equally contributing.

2.2 Modality-Conditioned Reconstruction from Embeddings

Similar to conditional generation methods which utilize a single generator to
sample different distributions by a conditional vector [14,21], we treat the target
modality type t as a one-hot condition vector ct ∈ RS . Thus, the decoder D
is tasked with estimating values of the target modality from a given embedding
under a condition. Although modality-wise paired data from the same subject are
limited, due to LDA and LMC , the loss for the decoder LD can be approximated
to the self-reconstruction loss of unpaired data xk,t from the translation loss as

LD(xk,s, xk,t) = ||xk,t−D([E(xk,s), ct])||2 ≈ LD(xk,t) = ||xk,t−D([E(xk,t), ct])||2 (7)

where s, t ∈ {1, · · · , S} correspond to distinct modality types of source and
target each, and [·,·] denotes to the concatenation of given elements.

2.3 Imputation Procedure

Suppose a subject k lacks a feature xk,t. Our framework is capable of generating
x̂k,t based on existing xk,s where s ̸= t, leveraging the trained encoder E and
decoder D conditioned on the target modality t. This ensures that all K subjects
possess feasible features across S modalities to maximize data utilization.
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Table 1. Sample-size per modality of ADNI dataset.

Label CT TAU FDG AMY Common
CN 844 237 861 735 123

EMCI 490 186 597 833 102
LMCI 250 105 1138 447 40
AD 240 85 755 422 10

Total 1824 613 3351 2437 275

3 Experiment

Dataset. We validate our framework on four imaging measures from ADNI
study [8]. Based on Destrieux atlas [3], each image was partitioned into 148 cor-
tical and 12 sub-cortical regions. For each parcellation, region-specific imaging
features including Standard Uptake Value Ratio (SUVR) [24] of β-amyloid pro-
tein (AMY), metabolism (FDG), and Tau protein (TAU) from PETs, along with
cortical thickness (CT) from MRI scans, were measured. The diagnostic labels
for each subject include CN, EMCI, LMCI and AD. N=275 subjects have com-
plete image set denoted as ‘Common’ in Table 1, which serve as the test data in
Group Comparison Analysis and Downstream Classification. To prevent double
dipping, we exclusively utilize the remaining data to train our framework.
Baselines. Our baseline starts from No Imputation that utilizes only subjects
with all imaging features. We adopt five established imputation baselines; Impu-
tation with diagnostic group means per imaging feature (Class-wise Mean) [4],
Linear model-based imputation with chained equations (MICE ) [26], Imputation
via non-parametric random forests (MissForest) [22], Imputation using genera-
tive adversarial networks [6] (GAIN ) [29], and Imputation with trained models
utilizing Sinkhorn divergences between random batches for similarity quantifica-
tion (Sinkhorn) [15]. Additionaly, we employ Pair-wise MLPs, training one-to-
one Multi-Layer Perceptrons (MLPs) for all pairs of modalities (i.e., 4P2 pairs).
For the purpose of ablation, we introduce two additional baselines from our
framework (Ours (LOC +LMC)); (1) A model that replaces LOC with LSC and
omits LMC (SCL), and (2) a model that solely omit LMC (Ours (LOC)).
Training. For each baselines and our method, we stack 2 layers with 128 hidden
units for E and D each. AdamW [10] with learning rate 10−3 is used, decayed at
0.05 for every layer. We train each model 3000 epochs with a batch size of 4096.

4 Result and Analysis

Embedding Space Analysis. To verify LOC for aligning samples in the em-
bedding space, we visualize the embeddings using t-SNE [11] compared to those
from Cross-entropy LCE and supervised contrastive learning LSC . As there are
only 10 AD subjects in the test set (i.e., ‘Common’ in the Table 1), we randomly
split the whole data in 8:2 ratio for train/test sets only in this visualization ex-
periment. For every result in Fig. 3, LDA was adopted together with each loss
to utilize single E for every modality. As LCE and LSC simply separate the
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Fig. 3. Visualizations of embeddings under each loss by t-SNE [11]. Each individual
encoder is trained with three distinct losses including Cross-Entropy LCE (left), Su-
pervised Contrastive Loss LSC (center) and our Ordinal Contrastive Loss LOC (right)
along with domain adversarial loss LDA. (a) and (b) correspond to training and testing
data respectively. (Color: AD-stage labels, Shape: imaging scan types.)

samples without differentiation under diagnostic label in the embedding space,
resulting embeddings do not show any visible order. However, our LOC aligns
the embedding under the disease severity as we argued in section 2.1.
Statistical Analysis. To validate the robustness of our estimated data, we
conduct statistical group comparisons at each ROI-level between consecutive
groups (i.e., CN-EMCI, EMCI-LMCI, LMCI-AD). Our goal is to detect more
statistically significant ROIs by imputing the missing features with our method.
The increase indicates higher statistical sensitivity than using only real samples,
as randomly generated data will not change the effect size between the groups.

(a) Before imputation (b) After imputation 0.0

10.0

4.2

Modality CN vs EMCI EMCI vs LMCI LMCI vs AD
(a) (b) (a) (b) (a) (b)

Cortical Thickness 59 88 (57) 24 64 (20) 55 131 (55)
Tau 0 84 (0) 1 22 (1) 9 99 (9)
FDG 48 83 (44) 77 94 (75) 139 119 (119)
β-Amyloid 32 70 (27) 6 78 (6) 144 152 (144)

Fig. 4. p-values from group comparisons with Bonferroni correction at α = 0.01: (a)
before imputation, (b) after imputation from our model. Top: Resutant p-value maps
on a brain surface (left hemisphere) [12] in a −log10 from CN and EMCI comparison
with cortical thickness, and (b) shows higher sensitivity. Bottom: Number of significant
ROIs. Number of common ROIs before-and-after imputation are in ().
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Table 2. Classification performance on ADNI data with all imaging features.

Classifier MLP (2 layers) MLP (4 layers)
Method Accuracy Precision Recall Accuracy Precision Recall
No Imputation 0.673±0.030 0.659±0.025 0.673±0.030 0.698±0.048 0.707±0.047 0.698±0.048
Class-wise Mean [4] 0.753±0.050 0.778±0.041 0.753±0.050 0.775±0.036 0.771±0.032 0.775±0.036
MICE [26] 0.739±0.043 0.761±0.046 0.739±0.043 0.814±0.043 0.761±0.046 0.814±0.043
MissForest [22] 0.721±0.061 0.753±0.080 0.721±0.061 0.832±0.025 0.844±0.024 0.832±0.025
Sinkhorn [15] 0.776±0.044 0.799±0.041 0.776±0.044 0.829±0.033 0.847±0.041 0.829±0.033
GAIN [29] 0.752±0.029 0.766±0.022 0.752±0.029 0.795±0.054 0.805±0.050 0.795±0.054
Pair-wise MLPs 0.756±0.030 0.782±0.036 0.756±0.030 0.782±0.062 0.799±0.060 0.782±0.062
SCL [9] 0.813±0.042 0.812±0.051 0.813±0.042 0.845±0.020 0.851±0.038 0.845±0.020
Ours (LOC) 0.826±0.029 0.829±0.021 0.826±0.029 0.851±0.046 0.862±0.051 0.851±0.046
Ours (LOC + LMC) 0.829±0.042 0.839±0.041 0.829±0.042 0.854±0.025 0.862±0.024 0.854±0.025

In Fig. 4, we summarize the count of significant ROIs, whose p-values sur-
vive multiple comparison correction i.e., Bonferroni correction at 0.01 [16]. With
the imputation, the number of significant ROIs increases in most experiments
depicted in Fig. 4 (bottom). The Fig. 4 (top) demonstrates the results of CN vs.
EMCI analysis with CT on a cortical surface, which highlights the enhanced sen-
sitivity (i.e., lower p-values) from the imputation in several frontal and temporal
regions [20]. Since the resulting ROIs from our method subsume the majority of
the ROIs from the real data analysis, as summarized in () of Fig. 4, it indicates
that our approach preserves the characteristics of the real data as well. Com-
paring Fig. 4 (a) and (b) at the top, the ROIs newly identified includes superior
frontal gyrus, superior temporal gyrus and anterior cingulate cortex which are
major ROIs in preclinical AD analysis [25,28,30].

Downstream Classification Performance. We employ MLPs with 2 and 4
layers as downstream classifiers to demonstrate effectiveness of our imputation.
These models take whole imaging measures as input after concatenation (e.g.,
xk ∈ RS·Q for k-th subject). For unbiased results, we perform classification using
cross-validation (CV). Beginning with the No Imputation scenario, we partition
samples from common subjects into 5 folds, with one fold served as test data
while the rest folds are utilized to train the classification model. For other meth-
ods, subjects with missing features are integrated as supplementary training data
for the classification models after applying each distinctive imputation method.

In Table 2, we report the classification performance derived from the 5-fold
CV. Imputation improved performance over No Imputation highlighting the ad-
vantage of utilizing incomplete subjects. Most of all, our framework outper-
formed all imputation baselines across both classifiers, showing superior results
for all evaluation metrics. When comparing the use of LSC (for SCL) and LOC ,
utilizing LOC yields better performance by 1.3%p in accuracy, indicating that
LOC helps imputing data with ordinal labels. In addition, LMC also improves
the result by personalizing the embeddings from different modalities of the same
subject, achieving almost 83% accuracy in the 4-way classification, which would
remain as 67.3% without the our imputation.
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5 Conclusion

In this work, we propose a promising framework that imputes unobserved imag-
ing measures of subjects by translating their existing measures. To enable holis-
tic imputation accurately reflecting individual disease conditions, our framework
devises modality-invariant and disease-progress aligned latent space guided by
1) domain adversarial training, 2) maximizing modality-wise coherence, and
3) ordinal contrastive learning. Experimental results on the ADNI study show
that our model offers reliable estimations of unobserved modalities for individual
subjects, facilitating the downstream AD analyses. Our work has potential to
be adopted by other neuroimaging studies suffering from missing measures.
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