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Abstract. The current models for automatic gout diagnosis train convo-
lutional neural network (CNN) using musculoskeletal ultrasound (MSKUS)
images paired with classification labels, which are annotated by experi-
ence sonographers. However, this prevalent diagnostic model overlooks
valuable supplementary information derived from sonographers’ annota-
tions, such as the visual scan-path followed by sonographers. We notice
that this annotation procedure offers valuable insight into human at-
tention, aiding the CNN model in focusing on crucial features in gouty
MSKUS scans, including the double contour sign, tophus, and snow-
storm, which play a crucial role in sonographers’ diagnostic decisions. To
verify this, we create a gout MSKUS dataset that enriched with sonog-
raphers’ annotation byproduct visual scan-path. Furthermore, we intro-
duce a scan-path based fine-tuning training mechanism (SFT) for gout
diagnosis models, leveraging the annotation byproduct scan-paths for en-
hanced learning. The experimental results demonstrate the superiority
of our SFT method over several SOTA CNNs.

Keywords: Musculoskeletal ultrasound · Gout diagnosis · Visual scan-
path.

1 Introduction

Gout, a typical manifestation of inflammatory arthritis, is diagnosed through
the identification of monosodium urate crystals in aspirate from synovial fluid
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or tophi. However, the use of arthrocentesis for this purpose is invasive and not al-
ways practical for all patients [10]. Musculoskeletal ultrasound (MSKUS), known
for its real-time, non-invasive, and high-resolution capabilities, has emerged as
a potent tool for evaluating the joint status of individuals with gout [13]. Nev-
ertheless, the accuracy of MSKUS-based gout diagnosis heavily depends on the
experience of the sonographers, introducing subjectivity and the potential for
misdiagnosis when the patient’s clinical manifestations are challenging to dif-
ferentiate. The diagnosis process is subjective and time-consuming, so it is nec-
essary to introduce automatic diagnosis system. While automatic ultrasound
diagnosis models based on deep CNNs [7,14] have been extensively explored for
diseases like thyroid nodules and breast cancer, significant challenges persist in
the realm of gout diagnosis. Existing studies indicate that common gout features
on MSKUS include synovial effusion, the double contour sign, and gout stones.
Using synovial effusion as an example, it is characterized by non-echoic or hy-
poechoic joint cavity widening in the MSKUS image [10,13]. The feature region
is small, contains limited information, and bears similarity to other regional fea-
tures (as illustrated in Fig. 1 a). This similarity poses a challenge for current
CNN models to effectively extract the features with the Class Activation Map
(CAM) [9] method in the MSKUS image (as depicted in Fig. 1 c).

Fig. 1. (a) MSKUS images; (b) the sonographers’ scan path in annotation procedure;
(c) Grad-CAM of current CNN model (Using DenseNet121 as an example); (d) Grad-
CAM of our model.

To address these challenges, recent efforts have explored the use of human
visual attention for lesion diagnosis in ultrasound images. For example, Alsharid
et al. [1] introduced multi-modal deep neural networks for analyzing fetal ultra-
sound videos, incorporating sonographer gaze in the form of attention maps. Cai
et al. [4] proposed the SonoNet [2] model, which integrates the attention map of
sonographers into different convolution layers to enhance recognition accuracy.
While these methods have shown promise, they require collecting eye movement
data for each tested ultrasound image in real clinic applications. Cao et al. [6]
presented a framework for adjusting CNNs to "think like sonographers" in gout
diagnosis, involving a comparison between sonographers’ attention maps and
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those generated by CNNs. This model strikes a balance between accuracy and
reasonability during the training phase. However, existing studies used static
methods to model the gaze point of each image to generate corresponding visual
heatmaps, ignoring the learning of sonographers’ eyes scanning pattern.

We noticed that the sonographers’ annotation procedure mirrors the diagnos-
tic process. In the procedure, the sonographer subconsciously searches the lesion
features in the image. The sonographers’ eye scan-path, mouse track, and other
annotation byproducts generated during the diagnostic process serve as specific
expressions of their professional experience (as depicted in Fig. 1b). Study has
indicated that eye movement trajectories or eye scan-paths are closely linked to
physicians’ diagnostic outcomes and contain vital information for the diagnostic
classification of images [11]. Therefore, the eye scan-path is more representative
in annotation byproducts. Different from existing studies, we propose a novel
framework——scan-path based fine-tuning training mechanism (SFT), to ad-
just the model to learn the sonographers’ clinical experience for gout diagnosis.

Our contributions are outlined as follows:

1) We design a novel learnable kernel to recognize different sonographers’ eyes
scanning pattern.

2) Our proposed training mechanism (SFT) enables the CNN model to simul-
taneously learn gout diagnosis and capture the sonographer’s attention.

3) Our training mechanism based on scan-paths demonstrates strong general-
ization and can be seamlessly integrated into various CNN backbones.

2 Materials and Methods

2.1 Sonographers’ Visual Scan-path

Collecting Sonographers’ Visual Scan-path. Eye tracking is achieved using
a remote eye-tracker (Tobii Eyetracking Eye Track-er 4C, Danderyd, Sweden)
mounted below the ultrasound machine display monitor. For each MSKUS frame,
we record the visual scan-path of sonographer gaze. The eye tracker was placed
on the lower side of the monitor. Sonographers do not have any visual or other
signal to know that the eye-tracking device is functioning. Before the experi-
ment begins, Sonographers perform a five-point calibration to ensure accurate
eye movement data collection.

Processing Sonographers’ Visual Scan-path. The visual scan-path data
G recorded by an eye tracker for each MSKUS image frame can be represented
as a sequence of tuples, denoted as G = {gi ∈ RK}Ni=1. Each gi = (pxi , p

y
i , ti, vi)

consists of the plane position coordinates (pxi , p
y
i ) of the i-th gaze point, the

corresponding time stamp ti, and the validity vi of whether the data is an out-
lier. Although the eye tracker can identify valid data samples, the raw data still
contains noise and bias. Therefore, preprocessing of the raw scan-path data is
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Fig. 2. The architecture of the scan-path based fine-tuning training mechanism.

necessary to obtain the fixation data of Sonographers. Firstly, the first 200ms
of each sequence are disregarded to eliminate any bias caused by residual visual
positions. Subsequently, a moving average filter with a window size of 3 samples
is applied to mitigate high-frequency noise from eye tremors. To identify fixa-
tions, any eye movement with an angular velocity lower than 30 degrees/second
is classified as a fixation, while all other points are classified as saccades [5].
Depending on factors such as the distance between the observer’s eyes and the
screen, as well as the screen’s size and resolution, this angular velocity threshold
is converted to a pixels/second threshold. The remaining gaze points correspond
to the fixation points of the Sonographers.

2.2 Proposed Method

We proposed a scan-path based fine-tuning training mechanism(SFT), as shown
in Fig. 2. Firstly, we propose the learnable kernel to simulate different visual
scan search patterns instead of merely applying single gaze attention map di-
rectly as the supervision signals to train the CNN model. Secondly, in view of
the lack of mutual adjustment between the generation of fixation graphs and
diagnostic classification, we propose a joint optimization objective function of
model prediction loss and scan-path interpretation loss.

Search Pattern Aware with Learnable Kernels. To recognize the sonog-
raphers’ visual attention region or called search patterns, an intuitive way is to
define h(·) as applying a k×k Gaussian kernel on the gaze scan-path G. Unfor-
tunately, diagnosing gout from MSKUS using this method poses two challenges.
Firstly, the generation of the gaze attention maps is independent of diagnosis
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classification, with both processes lacking mutual adjustment and collaborative
learning. Secondly, different sonographers have different eye scan search patterns,
and diverse MSKUS have diverse feature information. This approach, which uses
static methods to model each image individually, ignores the learning between
the sonographers’ eye scan pattern and the MSKUS feature information. There-
fore, we further extend this idea by defining a learnable input function hΦ with
multiple learnable kernel transformations so that the model can be more aware
of the sonographer’s visual attention area. The learnable imputation function
hΦ can be realized by applying multiple layers of convolution operations with
learnable kernels over the raw gaze scan-path G. The weights of learnable ker-
nels are constantly adjusted to the optimum during training.

Scan-path based Fine-tune Training Mechanism. Algorithm 1 explains
our training mechanism in detail. Concretely, the proposed objective function is
as follows:

min
θ,Φ

N∑
i=1

Lpredict(f θ(x
i), yi)+Lscan−path(hΦ(Ĝi),M i) (1)

For the MSKUS dataset D = {xi ∈ RC×H×W , yi ∈ {0, 1}}Ni=1, let xi be the
input image with C channels, H as height and W as width. Let yi be the gout
label of input xi (with ’1’ to represent a gout patient and ’0’ for a healthy per-
son, respectively). A CNN model learns the mapping function f θ for each input
MSKUS image to its corresponding gout label f θ : x → y and θ is the CNN model
parameter. In addition, sonographers’ visual scan-path is considered as a number
of directed gaze points Ĝi described in the previous subsection. Concretely, the
hΦ optimization object in Equation. 1 involves optimizing both the parameter
of learnable kernels Φ and the model-generated attention map M i = g(f θ(x1

i)).
In the equation, g(·) specify the CAM method [9], M i ∈ RH×W denotes CNN
model-generated attention map for i-th sample; hΦ is the learnable kernel func-
tion discussed in the previous subsection and Φ is the parameter of learnable
kernels function. We propose to optimize θ and Φ with a conventional gradient
descent algorithm by proposing a differentiable approximation to the indicator
function. Here, we only use the collected sonographers’ visual scan-path in the
model training phase, and do not require any additional input in the model test-
ing phase.

3 Experiments

3.1 Experimental Settings

MSKUS Data Collection. Ethics approval for human data collection was ob-
tained from Nanjing Drum Tower Hospital. All subjects provided written consent
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Algorithm 1 Scan-path based fine-tune training mechanism

Input: Dataset D , Pre-process scan-path Ĝi, Model parameters θ and Φ
Output: Optimized parameters θ∗ and Φ∗

for epoch ≤ N do
for xi, yi in D do

Model forward: ỹi = f θ(x
i)

Calculate Predict loss: Lpredict = CE(ỹi, yi)

Sonographers’ visual attention map based on learnable kernels: S i = hΦ(Ĝi)
Calculate CNN model-generated attention map CAM: M i = g(f θ(x

i
1))

Calculate Scan-path loss: Lscan−path = MAE(M i,S i)
Loss = λpLpredict + λsLscan−path

Loss backward to optimization parameters θ∗ and Φ∗

end for
end for

to participate in this study. The examinations were conducted using a Toshiba
Aplio500 scanner (Toshiba, Tokyo, Japan) with a 5-12MHz linear array trans-
ducer. The joints in which gout lesions were detected included the bilateral knee,
ankle, and first metatarsophalangeal joints of each patient. Dataset totally con-
tains 1127 MSKUS images from different patients including 509 gout images and
618 healthy images. The resolution of the MSKUS images were resized to 224
× 224. During the experiments, we randomly divided 10% of the dataset into
testing sets. Then we used 5-fold cross validation to divide the training sets and
validation sets.

Evaluation Metrics. Five metrics were employed to quantitatively assess the
performance of each model: Accuracy (ACC), Area Under Curve (AUC), Cor-
relation Coefficient (CC), Similarity (SIM), and Kullback-Leibler divergence
(KLD) [3]. ACC and AUC were utilized to evaluate the models’ classification
performance. CC, SIM, and KLD were used to ascertain the degree of alignment
between the models’ attention areas and those of sonographers during diagnoses.

Implementation Details We conducted the experiments using the Pytorch
framework on a single NVIDIA GTX 2080TI GPU. The models were trained
for 50 epochs using the ADAM optimizer with a learning rate of 1× 10−4. The
batch size was set to 10.

3.2 Results

Comparison with SOTA Sonographer Attention-based Mechanism.
For the gout classification task, as shown in Table. 1, we selected five classic CNN
classification models (Complete comparison can be found in the appendix.) un-
der different sonographer-attention based adjusting mechanisms including TLS
mechanism [6] and our "Scan-path based fine-tune training mechanism" (SFT).
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Fig. 3. Grad-CAM visualizations for the baseline, TLS and SFT across different back-
bone. Green points represents the scan-path from annotation procedure.

The results indicated that utilizing our SFT mechanism resulted in a signifi-
cant enhancement in all metrics, compared to the TLS models. Specifically, our
model’s ACC and AUC metrics are slightly better than TLS models, highlighting
its effectiveness in classification. The CC and SIM scores of our model were, on
average, 0.175 and 0.038 higher than those of the TLS model, respectively. The
KLD scores (Lower is better) exhibited a reduction of 0.498 in comparison to the
TLS models. These results demonstrate that our SFT adjusting mechanism not
only consistently improves the performance of CNN models in classifying gout,
but also outperforms the existing SOTA TLS adjusting mechanism. Furthermore,
Fig. 3 illustrated the qualitative results of CAM obtained by backbone CNN,
CNN with TLS, and CNN with SFT. The backbone models without SFT had
a tendency to focus on noise, textures, and artifacts, leading to unreliable gout
diagnoses. Conversely, models with SFT were able to effectively concentrate on
the critical lesion area, which aligned with the clinical diagnostic experience of
sonographers.

Comparison with Other Human-attention-fused CNN Models. Some
human-attention-fused CNN models incorporate recorded gaze information into
deep CNN models, while also imposing specific network structure constraints.
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Table 1. Comparison with other sonographer attention-based adjusting mechanism
and fixed Gaussian kernel.

Models ACC↑(%) AUC↑ CC↑ SIM↑ KLD↓

ResNet50 83.385±5.705 0.924±0.028 0.247±0.025 0.247±0.025 2.168±0.063
ResNet50-TLS 89.617±3.055 0.967±0.011 0.402±0.028 0.298±0.020 2.133±0.232
ResNet50-Gaussian 86.305±3.344 0.937±0.025 0.530±0.048 0.329±0.034 1.517±0.102
ResNet50-SFT 90.615±2.142 0.974±0.008 0.603±0.018 0.367±0.015 1.331±0.046

DenseNet121 82.307±0.973 0.927±0.008 0.260±0.036 0.149±0.008 2.142±0.075
DenseNet121-TLS 89.454±1.621 0.965±0.010 0.369±0.011 0.239±0.007 1.991±0.062
DenseNet121-Gaussian 87.076±1.713 0.959±0.017 0.398±0.0497 0.222±0.014 1.791±0.089
DenseNet121-SFT 89.387±0.574 0.966±0.004 0.529±0.049 0.272±0.021 1.570±0.107

Vgg16 89.132±3.201 0.958±0.021 0.221±0.089 0.182±0.044 3.461±0.776
Vgg16-TLS 91.501±2.885 0.966±0.020 0.416±0.020 0.305±0.013 1.932±0.084
Vgg16-Gaussian 90.615±2.451 0.959±0.034 0.509±0.092 0.330±0.055 1.689±0.500
Vgg16-SFT 91.534±2.525 0.976±0.010 0.560±0.039 0.376±0.040 1.427±0.079

Table 2. Comparison with other human-attention-fused CNN models.

Models ACC↑(%) AUC↑ CC↑ SIM↑ KLD↓

Sono-net [4] 90.391±0.019 0.945±0.009 0.057±0.048 0.096±0.026 12.841±2.786
Resnet+Gaze [12] 88.354±0.018 0.942±0.014 0.371±0.009 0.269±0.006 1.936±0.128
Unet+Gaze [8] 85.676±0.020 0.928±0.014 -0.003±0.013 0.0762±0.007 6.347±1.032

ResNet50-SFT 90.615±2.142 0.974±0.008 0.603±0.018 0.367±0.015 1.331±0.046

These models [4,8,12] require the collection of eye movement data from sono-
graphers for each image. As shown in Table. 2, in terms of model classifica-
tion accuracy, our model surpasses the human-attention-fused model (The ACC
reached as high as 90.615, and the AUC achieved a level of 0.974). In attention
evaluation metrics, compared to the top-performing ResNet-Gaze model [12],
the CC is higher by 0.232, SIM is higher by 0.098, and KLD is reduced by
0.605. Our training mechanism demonstrates a marked improvement over other
human-attention-fused CNN models. What is worth mentioning further is that,
in comparison to other human-attention-fused CNN models, no additional input
is required for the testing phase of the model. Thus our model can bypass the
need to collect the eye movement data of the sonographers during the classifica-
tion of newly acquired MSKUS images.

Ablation Analysis. To evaluate the effectiveness of learnable kernels, we com-
pared the gout diagnosis results of several classification models between learn-
able kernels (CNN-SFT) and fixed Gaussian kernels (CNN-Gaussian). Taking
ResNet50 as an example, we can get following observation from Table. 1. 1)
the Resnet50-Gaussian and our model, both applying joint optimization, out-
perform the baseline model on all performance metrics. This indicates that the
mechanism can improve the model accuracy and explainability; 2) as the joint
optimization and learnable kernel are added in sequence, the performance pro-
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gressively improved, with ACC increasing from 86.305% to 90.615%, and SIM
rising from 0.329 to 0.367, suggesting the superiority of our mechanism.

4 Conclusion

In this paper, we proposed a scan-path based fine-tune mechanism that instructs
the model to incorporate sonographers’ clinical diagnostic experience. This mech-
anism have three strategies: 1). the learnable kernel we proposed can be aware
of the diverse scan patterns of sonographers. 2). The novel scan-path based fine-
tune mechanism can mutually enhance gout classification and align the model of
attention with the sonographers’ scan-path patterns. 3). Extensive experiments
show that Our method has better gout diagnostic performance and generaliza-
tion ability, can be combined with different CNN backbone networks. Specially,
Sonographers’ annotations byproducts, used as direct training input, enable the
model to operate without requiring any additional input during the test phase.
Therefore, Our model has promising clinical application.

Acknowledgment. The authors acknowledge supports from National Nature
Science Foundation of China Grants (82027807, U20A20389, 62271246), Na-
tional Key Research and Development Program of China (2022YFC2405200),
and Natural Science Foundation of Jiangsu Province (BK20221477).

Disclosure of Interests. The authors have no competing interests to de-
clarethat are relevant to the content of this article.

References

1. Alsharid, M., Cai, Y., Sharma, H., Drukker, L., Papageorghiou, A.T., Noble, J.A.:
Gaze-assisted automatic captioning of fetal ultrasound videos using three-way
multi-modal deep neural networks. Medical Image Analysis 82, 102630 (2022)

2. Baumgartner, C.F., Kamnitsas, K., Matthew, J., Fletcher, T.P., Smith, S., Koch,
L.M., Kainz, B., Rueckert, D.: Sononet: Real-time detection and localisation of
fetal standard scan planes in freehand ultrasound. IEEE Transactions on Medical
Imaging 36(11), 2204–2215 (2017). https://doi.org/10.1109/TMI.2017.2712367

3. Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., Durand, F.: What do different
evaluation metrics tell us about saliency models? IEEE transactions on pattern
analysis and machine intelligence 41(3), 740–757 (2018)

4. Cai, Y., Sharma, H., Chatelain, P., Noble, J.A.: Sonoeyenet: Standardized fetal
ultrasound plane detection informed by eye tracking. In: 2018 IEEE 15th Inter-
national Symposium on Biomedical Imaging (ISBI 2018). pp. 1475–1478. IEEE
(2018)

5. Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J., Rundensteiner, E.A.: Scalable
distance-based outlier detection over high-volume data streams. In: 2014 IEEE
30th International Conference on Data Engineering. pp. 76–87 (2014). https://
doi.org/10.1109/ICDE.2014.6816641

https://doi.org/10.1109/TMI.2017.2712367
https://doi.org/10.1109/TMI.2017.2712367
https://doi.org/10.1109/ICDE.2014.6816641
https://doi.org/10.1109/ICDE.2014.6816641
https://doi.org/10.1109/ICDE.2014.6816641
https://doi.org/10.1109/ICDE.2014.6816641


10 Xin Tang, Zhi Cao et al.

6. Cao, Z., Zhang, W., Chen, K., Zhao, D., Zhang, D., Liao, H., Chen, F.: Think-
ing like sonographers: A deep cnn model for diagnosing gout from musculoskele-
tal ultrasound. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 159–168. Springer (2023)

7. Han, S., Kang, H.K., Jeong, J.Y., Park, M.H., Kim, W., Bang, W.C., Seong, Y.K.:
A deep learning framework for supporting the classification of breast lesions in
ultrasound images. Physics in Medicine & Biology 62(19), 7714 (2017)

8. Karargyris, A., Kashyap, S., Lourentzou, I., Wu, J.T., Sharma, A., Tong, M., Abe-
din, S., Beymer, D., Mukherjee, V., Krupinski, E.A., et al.: Creation and validation
of a chest x-ray dataset with eye-tracking and report dictation for ai development.
Scientific data 8(1), 92 (2021)

9. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE international conference on computer vision. pp. 618–626
(2017)

10. Thiele, R., Schlesinger, N.: Diagnosis of gout by ultrasound (2007)
11. Voisin, S., Pinto, F., Xu, S., Morin-Ducote, G., Hudson, K., Tourassi, G.D.: Inves-

tigating the association of eye gaze pattern and diagnostic error in mammography.
In: Medical Imaging 2013: Image Perception, Observer Performance, and Technol-
ogy Assessment. vol. 8673, p. 867302. SPIE (2013)

12. Wang, S., Ouyang, X., Liu, T., Wang, Q., Shen, D.: Follow my eye: Using gaze to
supervise computer-aided diagnosis. IEEE Transactions on Medical Imaging 41(7),
1688–1698 (2022)

13. Zhang, Q., Gao, F., Sun, W., Ma, J., Cheng, L., Li, Z.: The diagnostic performance
of musculoskeletal ultrasound in gout: a systematic review and meta-analysis. PLoS
One 13(7), e0199672 (2018)

14. Zhuang, Z., Yang, Z., Raj, A.N.J., Wei, C., Jin, P., Zhuang, S.: Breast ultra-
sound tumor image classification using image decomposition and fusion based on
adaptive multi-model spatial feature fusion. Computer methods and programs in
biomedicine 208, 106221 (2021)


	Follow Sonographers’ Visual Scan-path: Adjusting CNN Model for Diagnosing Gout from Musculoskeletal Ultrasound

