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Abstract. Efficient computation of forward and back projection is key
to scalability of iterative methods for low dose CT imaging at resolu-
tions needed in clinical applications. State-of-the-art projectors provide
computationally-efficient approximations to X-ray optics calculations in
the forward model that strike a balance between speed and accuracy.
While computational performance of these projectors are well studied,
their accuracy is often analyzed in idealistic settings. When choosing a
projector a key question is whether differences between projectors can
impact image reconstruction in realistic settings where nonlinearity of
the Beer-Lambert law and measurement noise may mask those differ-
ences. We present an approach for comparing the accuracy of projec-
tors in practical settings where the effects of the Beer-Lambert law and
measurement noise are captured by a sensitivity analysis of the forward
model. Our experiments provide a comparative analysis of state-of-the-
art projectors based on the impact of their approximations to the forward
model on the reconstruction error. Our experiments suggest that the dif-
ferences between projectors, measured by reconstruction errors, persists
with noise in low-dose measurements and become significant in few-view
imaging configurations.
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1 Introduction

X-ray imaging from low dose and/or limited views has a transformational value
for CT imaging applications. Model-based iterative reconstruction (MBIR) al-
gorithms integrate (statistical) models for X-ray optics, acquisition and image
priors into an optimization framework for image reconstruction from limited X-
ray data. One of the main challenges in using MBIR algorithms for imaging at
resolutions relevant to clinical applications is their computational cost [3, 10, 4].

A key ingredient of MBIR algorithms is the forward model that provides a
mathematical model for the acquisition process, following the Beer-Lambert law,
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by relating the attenuation map, in the image domain, to the projection data,
in the sinogram domain. For a particular imaging resolution, a linear approxi-
mation to the Beer-Lambert law is often used to construct a discretized forward
model, A, relating pixel/voxel intensities to detector measurements. The lin-
ear approximation of the Beer-Lambert law is widely adopted in the context of
iterative reconstruction algorithms [2] and the artifacts (e.g., exponential edge
gradient [7]) that arise from this approximation are well understood.

The computational challenges in iterative reconstruction algorithms stem
from the fact that in practical resolutions the forward model is prohibitively
large to be stored and reused during iterations. Instead, the forward projector
x 7→ Ax and its adjoint, back-projector y 7→ ATy, are computed on-the-fly
during iterations. The computation of the forward model is the most expensive
computation in MBIR algorithms.

Fast projectors reduce this computational burden, by introducing computa-
tionally efficient approximations to the integral transforms present in X-ray op-
tics such as line integrals and detector blur calculations. Earlier methods for fast
projection, such as pixel-driven, ray-driven [6] and distance-driven techniques
use resampling techniques to reduce cost and state-of-the-art methods provide
efficient approximations to the footprint of pixel/voxels in the detector domain
(see section 3). Each of these methods strike a balance between the speed and
accuracy for computation of the approximate forward model Â. While the effi-
ciency of fast projectors is assessed in terms of per-iteration computational cost,
the accuracy of projectors not only impacts the quality of image reconstruction
but also can impact the number of iterations necessary for convergence [13].

Contributions: Evaluation of fast projectors, from the accuracy perspective, in
prior work is limited to idealistic settings where the quality of forward projection
by Â from a discretized image is measured against the forward projection by a
computationally-expensive reference projector A (e.g., [4, 9, 1]). When choosing
a projection method, a key question is whether differences between accuracy of
different projectors can impact image reconstruction in realistic settings where
nonlinearity of the Beer-Lambert law and noise are present. This questions is
nontrivial since the forward model, A, is itself coming from a linearized approx-
imation to the Beer-Lambert law and hence the differences among projectors
could be insignificant in practical settings. We present an approach for compar-
ing the accuracy of projectors in practical settings where effects of discretization
errors, nonlinearity of the Beer-Lambert law and the Poisson noise in (low-dose)
detector measurements are captured by a specialized notion of condition number
based on the condition number of the forward model. We study the performance
of state-of-the-art projectors in realistic settings on a phantom dataset where ef-
fects of the Beer-Lambert law is computable from exact line integrals in absence
of discretization errors. Our study shows that the differences between projectors,
measured by reconstruction errors, in realistic imaging conditions persist with
measurement noise and the impact can only become less significant with large
number of views.
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2 Sensitivity Analysis of the Forward Model

Performance of algorithms on computational problems is generally characterized
by sensitivity analysis of the problem with respect to perturbations of the input.
In idealized settings the reconstruction problem can be formulated, algebraically,
as a consistent system of equations, Ax = b and iterative methods, such as SIRT,
can be used for reconstruction and assessing accuracy of projectors (e.g., [4]).
In this case, sensitivity analysis shows that the condition number of the forward
model, cond(A), determines the limits in the accuracy of the solution as well as
the limits in performance of any iterative method for solving the system.

In practical CT reconstruction problems, effects of the Beer-Lambert law,
noise in detector measurements as well as discretization errors lead to an in-
consistent algebraic system whose conditioning not only depends on cond(A)
but also on the amount of inconsistency of the system. Given a discretization
of the imaging domain, the forward model A calculates line-integrals over the
image-space and integrates them over the detector cells. This computationally
expensive projector is often used as reference projector [9, 4, 1, 13] and serves as
the ideal forward model in the linearized approximation to the Beer-Lambert
law. The vector of detector measurements b is obtained from line-integrals of
the attenuation map whose exponential are integrated across detector cells cap-
turing the nonlinearity of the Beer-Lambert law. The angle θ that the data b
makes with (the span of) the column vectors of A provides a measure of in-
consistency of the inverse problem and hence it depends on the strength of the
Beer-Lambert law effect, magnitude of discretization errors, and the amount of
noise in measurements. The sensitivity of the inconsistent problem depends not
only on cond(A) but also this angle θ.

Let Â = A + ∆A denote the approximation introduced by a projector
(Section 3). Moreover let x + ∆x be the solution to the perturbed inverse
problem by the projector Â. Then a first-order error analysis (e.g., [5]) shows:
∥∆x∥/∥x∥ ≤ κ∥∆A∥/∥A∥ where the condition number is defined by:

κ :=
[
(cond(A))

2
tan θ + cond(A)

]
. (1)

In absence of the nonlinearity of the Beer-Lambert law (e.g., no detector blur)
and discretization errors, b lies in the span of A (i.e., θ = 0) and the sensitivity
of the inverse problem reduces to cond(A). However depending on the pixel and
detector sizes the strength of the nonlinearity in the Beer-Lambert law increases
θ > 0 and the sensitivity of the problem becomes quadratically dependent on
cond(A). Moreover, the noise in measurements further impacts the condition as
θ depends on the direction noisy measurements b̂ deviate from noiseless mea-
surements b and the sensitivity of the problem needs to be analyzed statistically
with an ensemble of noisy measurements. We study this condition number in
fan beam geometry in section 4 that quantifies how the differences among fast
projectors, in terms of accuracy, impacts image reconstruction accuracy.
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3 Fast Projectors

Earlier approaches such as pixel-driven and ray-driven methods leverage interpo-
lation/resampling techniques in image-domain and sinogram-domain for efficient
forward and back projection operators. The distance-driven method resamples
the image/sinogram signals from pixel and detector boundaries projected to a
common plane according to the fan-beam geometry. State-of-the-art projectors
provide a computationally efficient estimate of the contribution of a pixel to each
detector that is used during forward and back projection.

Separable Footprints The SF [9] projector simplifies the line integration of pixel/
voxel by approximating their footprints as trapezoidal/separable functions. This
approximation allows for efficient calculation of their integral over detector cells.
Compared to distance-driven methods, SF projectors are known to be more
accurate and their computational cost are comparable in fan-beam and cone-
beam geometries.

Look-up Table-based Ray Integration The LTRI [4] projector is an area-based
method that computes the contribution of a pixel to a detector by the intersec-
tion area of source-detector triangle with that pixel. To reduce computations this
method utilizes a pre-calculated look-up table, which is indexed by the perpen-
dicular distance from the voxel center to the X-ray source-detector path, and the
angle between the ray and a reference axis. The intersection area, which deter-
mines the weight of a voxel’s contribution, is derived from the table using these
parameters. GPU implementation of LTRI method is available and considered
to be comparable in performance with the SF projector.

Non-Separable Footprints The CNSF projector [12, 13] derives the exact line
integrals of pixel/voxels in the sinogram domain using an algebraic framework
for directional convolution in the continuous domain. The integration over the
detector cell is accomplished by back-projection of the detector cell on a central
slice through the pixel/voxel resulting in a directional convolution in the image
space. The line integrals of the directionally-blurred pixel are then computed
exactly by piecewise polynomial functions that are efficiently evaluated during
forward and back projection. This method eliminates the need for accessing
memory that often limits the performance in GPU computations.

4 Experiment and Results

In this section, we first evaluate the sensitivity of the forward model under dif-
ferent (uniform) view counts for the least square solution to the inverse problem
in presence of the nonlinearity of Beer-Lambert law as well as Poisson noise in
detector measurements. This evaluation provides an upper bound for the impact
(i.e., backward error) of the perturbation to the forward model introduced by
fast projectors. Subsequently, we evaluate the root mean square error (RMSE) of
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images reconstructed by SF, LTRI and CNSF projectors in comparison to the so-
lution of the reference projector, under the Beer-Lambert law and varying noise
levels. We utilized a field of view (FOV) of 100 mm × 100 mm. The simulation
was conducted on a flat detector fan-beam CT system with a source-to-detector
distance Dsd = 156.25 mm and a source-to-object distance Dso = 78.125 mm.
To cover this FOV, each view has 855 detectors with each detector cell size of
0.78125 mm. As our goal is to quantify the differences in approximations present
in these fast projectors at a large number of imaging configurations, we adopted
a 128 × 128 resolution and employed a direct solver in sections 4.1, 4.2, and
4.3, eliminating the influence of finite iterations on the error analysis. In section
4.4, since the high resolution makes it impractical to use a direct solver, we em-
ploy the optimized gradient method [8] for fast projectors, aiming to compare
the performance of projectors under low-dose conditions with practical iterative
methods at a resolution of 256×256.

4.1 Sensitivity To Perturbations of the Forward Model

To assess the impact of using fast projectors, instead of computationally ex-
pensive reference projector, for solving the inverse problem, we establish the
sensitivity of the inverse problem with respect to perturbations to the forward
model. This actually reveals the upper bound of the backward error caused by
the perturbations to fast projectors compared to the reference projector un-
der different views. To that end, Fig. 1 shows this sensitivity, based on (1), as a
function of the number of views. For this experiment the detector data b was cal-
culated in presence of the Beer-Lambert law effects using numerical integration
of line-integrals that are calculated analytically for the FORBILD dataset[11].

40 60 80 100 120 140 160 180
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Fig. 1: Sensitivity of the inverse problem with respect to perturbations of the
forward model.
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As expected, for a large number of views, fast projector approximations to
the forward model have little impact (i.e., proportional to ∥∆A∥) on the re-
construction as the condition number decreases. However with fewer number of
views the impact of approximations brought about by fast projectors becomes
more prominent as the condition number increases.

To assess the impact of noise on the sensitivity of the inverse problem, we
also calculated an ensemble of noisy measurements according to a blank scan
factor of I0 = 104. Since the scale of perturbations at a small number of views
is drastically different from that at a large number of views, many of the scatter
plot points overlap. Therefore, we have expanded the scatter plot into a box
plot, where the top and bottom numbers of the box plot represent the range of
the scatter points. The length of the box plot is proportional to the logarithm of
this range, so a longer box plot means the scatter points are more spread out, as
shown in Fig. 2. This experiment illustrates the extent of variations introduced
by noise in the sensitivity of the inverse problem with respect to perturbations
introduced by fast projectors.
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Fig. 2: Variations of the sensitivity measure under Poisson noise with blank scan
factor of I0 = 104.

4.2 Reconstruction Error

As the sensitivity analysis provides an upper bound on the impact of pertur-
bations to the forward model on the solution, in this section we examine the
actual perturbations introduced to the reconstructed images due to perturba-
tions of the forward model by fast projectors. For this experiment the detector
data b was calculated in presence of the Beer-Lambert law using numerical in-
tegration (on the detector cell) of line-integrals that are calculated analytically
for the FORBILD dataset. Fig. 3 shows the RMSE in images reconstructed by
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SF, LTRI and CNSF compared to the reconstruction provided by the reference
projector at a given number of views.
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Fig. 3: The RMSE performance of fast projectors compared with the Ref pro-
jector at different number of views under the influence of the Beer-Lambert law
and discretization error.

At 40 views, the SF projector has the lowest RMSE, showing the best perfor-
mance. By 50 views, the RMSE of SF is very close to that of CNSF, indicating
comparable image reconstruction accuracy. However, from 60 views onwards,
CNSF surpasses SF with a consistently lower RMSE. The LTRI projector has
the highest RMSE at all view counts, suggesting it has the lowest reconstruc-
tion accuracy. In our experiments, we also observed that the differences between
projectors become negligible for a large number of views (i.e., 360 in this setting).

4.3 Reconstruction Error in Presence of Poisson Noise

To assess the impact of measurement noise on the differences between fast projec-
tors, we collected an ensemble of noisy measurements b̂ by simulating a Poisson
process [2] for detector counts at high noise setting.

Since the scale of variability in the error in image reconstruction, from noisy
measurements, is highly different for a small versus large number of views, we
visualized the variabilities in a scatter plot and expanded it into a box plot,
where the length of the box plot is proportional to the inverse of the logarithm
of the range, to show in Fig. 4.

4.4 Reconstruction Result

Fig. 5 shows the reconstruction result of the FORBILD head phantom with a
field of view (FOV) of 100mm × 100mm, at the resolution of 256× 256 by the
reference projector (top left) and the differences in image reconstruction brought
about by fast projectors. This experiment suggests that under the conditions of



8 Shiyu Xie, Kai Zhang, and Alireza Entezari

50 60 70 80 90 100 110 120
Views

10 5

10 4

10 3

10 2

10 1

100

101

102

RM
SE

(m
m

1 )

SF
CNSF
LTRI

Fig. 4: The RMSE performance of fast projectors compared with the Ref projec-
tor at different number of views under the influence of the Beer-Lambert law,
discretization error and high noise (blank scan factor 5× 104).

high noise and the presence of the Beer-Lambert Law, the error reconstructed
images follow the accuracy of projectors as CNSF is closer to the reference
projector, followed by SF, and lastly LTRI.

5 Conclusion

Our analysis of the sensitivity of the inverse problem provides a basis for com-
parison of fast projectors and assessing the impact of their differences in image
reconstruction. Our experiments suggest that area-based projectors compared
to line-integral methods may have an inherently larger error in reconstructed
images. For low-dose CT applications, the projectors with most accurate com-
putation of line integrals provide the most robust imaging results. CNSF calcu-
lates the line integral exactly and approximates the detector blur, whereas SF
approximates the line integral over the detector cell, leading to differences in
the results. Furthermore, LTRI that approximates the line integrals across the
detector by an area calculation, introduce more significant errors that are observ-
able in reconstructed images. As the differences between projectors become less
significant with large set of views, the accuracy of computing the forward model
becomes important for few-view imaging applications. Moreover, the differences
between projectors persist in presence of nonlinearity of the Beer-Lambert law
and levels of Poisson noise in detector data. Future work includes evaluation of
the role of (quadratic) regularization in sensitivity of the inverse problem and
examination of these projectors in cone-beam geometry.

Code Availability. The code and data of this study has been made available at
https://github.com/ShiyuXie0116/Evaluation-of-Projectors-Noise-Nonlinearity.
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Fig. 5: Reconstruction of FORBILD head phantom from 90 uniformly spaced
projections by Ref projector (top left), in presence of the nonlinearity in the
Beer-Lambert law and high noise (blank scan factor of I0 = 5× 104), using the
optimized gradient method [8] with 50 iterations. The differences between fast
projectors and Ref projector are shown in the other three images.
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