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Abstract. Recent development in heatmap regression-based models have
been central to anatomical landmark detection, yet their efficiency is of-
ten limited due to the lack of skeletal structure constraints. Despite the
notable use of graph convolution networks (GCNs) in human pose esti-
mation and facial landmark detection, manual construction of skeletal
structures remains prevalent, presenting challenges in medical contexts
with numerous non-intuitive structure. This paper introduces an inno-
vative skeleton construction model for GCNs, integrating graph sparsity
and Fiedler regularization, diverging from traditional manual methods.
We provide both theoretical validation and a practical implementation
of our model, demonstrating its real-world efficacy. Additionally, we have
developed two new medical datasets tailored for this research, along with
testing on an open dataset. Our results consistently show our method’s
superior performance and versatility in anatomical landmark detection,
establishing a new benchmark in the field, as evidenced by extensive
testing across diverse datasets.

Keywords: Graph Convolution Networks · Fiedler Regularizations ·
Graph Sparsity · Landmark Detection.

1 Introduction

The precise and robust methods of anatomical landmarks localization in medical
images are helpful for various diagnoses and treatment procedures [26, 12]. The
connections between anatomical landmarks termed as the skeletal structure con-
tain valuable anatomical and shape information. Graph Convolutional Networks
(GCNs) are adept at capturing graph node attributes and relational structures
through a sequence of graph-level convolutions [33].

In most previous research [2, 3], the construction of skeletal structures typi-
cally relies on predefined manual designs based on prior knowledge and assump-
tions about anatomy. However, in medical imaging, designing skeletal structures
becomes more challenging due to the abundance of anatomical landmarks that
frequently lack intuitive structure. This complexity makes it difficult to create a
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graph that accurately represents the intricate relationships between landmarks.
Additionally, adopting adaptive learning for graph connectivities, instead of pre-
determined structures, could markedly improve the model’s generalization capa-
bilities. Adaptive methods potentially allow the model to better accommodate
unique and variable characteristics leading to more accurate and reliable analy-
ses.

When considering the connectivity of the graph, it is essential to strike a
balance between too few and excessive connected edges [10, 13]. Therefore, in
this study, we aim to address a crucial question: Is it feasible to learn skeletal
structures directly without the need for manual design across various tasks and
attain outstanding performance through the network?

Algebraic connectivity, often referred to as the Fiedler value and denoted
by λ2, is a key concept in spectral graph theory [22, 23]. λ2 denotes the sec-
ond smallest eigenvalue of the Laplacian Matrix of a graph. This value reflects
the connectivity and sparsity of the graph. Optimizing λ2 reduces unnecessary
and/or detrimental connections, leading to a more efficient network. It has re-
ceived much attention for optimizing connections in various fields[15, 6, 9, 11],
such as optical communication satellite networks, digital logistics networks and
so on.

In this paper, we introduce a new method for learning skeletal structures, the
Fiedler-regularized Graph Convolution Network (FRGCN), specifically designed
to minimize the Fiedler value of a graph. The main contributions of this work
can be summarized as:

• We present a novel skeleton reconstruction model using Fiedler regular-
ization, which introduces graph-derived structural constraints to GCNs, repre-
senting a significant shift from traditional manual methods.

• We introduce the FRGCN, an effective model for landmark detection,
which includes a Target-aware Encoder (TAE) and a Skeleton-aware Encoder
(SAE). The TAE is crafted to capture information about landmarks and their
interrelations, while the SAE is tailored to enforce constraints on skeletal struc-
tures.

• Extensive experiments show that FRGCN consistently outperforms SOTA
methods on three medical image datasets.

2 Method

2.1 Related Work

Recent advancements in deep learning have showcased its efficacy in medical
landmark detection [16, 34]. These methodologies can generally be categorized
into three types: coordinate-based [24], heatmap-based [27], and graph-based
approaches [35]. Graph-based methods, often building upon the other two meth-
ods, utilize GCNs to learn the interrelations of landmarks. Most GCNs are built
on skeletal structures that are manually designed. To accommodate the chang-
ing relationships among human keypoints, dynamic graph convolution network
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models [17] dynamically select preferred structures from manually pre-designed
skeletons during training. Yet, these structural constraints are not applied dur-
ing inference. While RSGNet [7] has improved upon this limitation, it still relies
on manually designed priors, making the structural design for landmarks with
non-intuitive relationships a persistent challenge.

Some approaches do not rely on manually designed structures, such as graph
matching models [35] and deformable shape models [30]. However, their per-
formance is significantly influenced by the initial configuration of the skeletal
structures. Additionally, transformer-based methods enhance global relation-
ships through attention mechanisms [19], eliminating the need for manually de-
signed structures. However, these methods come with additional computational
costs and may not perform as well on smaller datasets [36]. Consequently, there
is an urgent need for a computationally inexpensive method for the automatic
learning of skeletal structures.

2.2 Target-aware Encoder (TAE)

In this section, we introduce the three components of the FRGCN using lower
limb landmark detection as an illustrative example. The lower limb landmarks
in this study, based on DR images, are displayed in supplement Fig. 1. Here, a
total of 20 landmarks are annotated to aid in the analysis of the mechanical axis
of the lower limbs [18, 8].

Given an input image I =
{
Ir ∈ RHr×Wr

}N

r=1
, where N represents the num-

ber of lower limb images and r is the image index, and Hr and Wr denote the
input image height and width respectively. The positions of the K landmarks
are represented by a set of coordinates P ∈ RK×2.

First, we adopt HRNet [21] as a backbone to extract visual features fr. Given
the feature fr, candidate landmarks’ position P ′ ∈ RK×2 can be generated.
In order to further refine the coordinates for each landmarks, we calcuate the
position vector fb ∈ [x, y,∆x,∆y], where (x, y) denotes the coordinates of the
candidate landmark, and (∆x,∆y) signifies the offset between the landmark
and the center point of the image. The position encoder enhance the encoding
of vector fb.

To further aggregate the information between the visual vectors and position
vectors, we also add spatial attention module [37]. The process is as follows:

Ec = ψc(wc, concat(ψr(wr, fr), ψb(wb, fb))), (1)

where ψ represents the encoding process. ψr,ψb are the visual and position
encoder with parameters wr and wb. ψc is the spatial attention module of the
weights wc. Ec represents the encoded vector output of the TAE.

2.3 Graph Convolution Network using Fiedler Regularization

In a landmark graph G = (V,E), the vertex set V comprises all the landmarks,
and E is the edge set. The weights of E are either 0 or 1, indicating the pres-
ence or absence of connections between landmarks. The learning process for
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Fig. 1: The framework of our Graph Convolutional Network using Fiedler Reg-
ularization (FRGCN). (a) The Target-aware Encoder (TAE) comprises visual
encoders ψr, positional encoders ψb and spatial attention module ψc. (b) The
Skeleton-aware Encoder (SAE) utilizes Fiedler regularization to model Fiedler
matrix and then updates using the non-linear layers. The SAE serves as the graph
encoding module ψl. fq is the feature vector aggregating the encoding outputs
of TAE and SAE. The Fiedler diagram demonstrate the principle of minimizing
the Fiedler value of the graph. We illustrate the FRGCN-based graph cut by
selecting a representative landmark highlighted in red. This division into two
subgraphs is represented by the yellow and green lines, positioned above and
below, respectively. Nodes on the plane are categorized into lighter and brighter
shades. (c) Illustrative diagrams depicting manually designed edges connecting
lower limb points, featuring configurations with 32, 40, and 48 points.

skeletal structures becomes non-differentiable due to these dichotomized values,
presenting a challenge for gradient-based optimization methods commonly used
in neural networks.

In a general graph, the basic unit of graph connectivity consists of two nodes
connected by an edge. We designate a new graph G

′
= (V

′
, E

′
, |F |) based on

these units. Here, the vertex set V
′
includes all newly defined nodes, with each

node representing a pair of connected nodes and the intervening edge in G,
leading to a size of (K(K−1)

2 , 1), where K is the number of original nodes in
G. The edge set E

′
corresponds to all possible connections within V

′
, and we

assume that all edges in E
′
to be present. The set F contains the weights of the

edges in E
′
, where each weight Fij is a real number within the range [−1, 1],

and i and j indicate the respective rows and columns in F . The graph G′ is
expressed in matrix form. The degree matrix D′ is derived from G′, with each
diagonal element D′ii calculated as the sum of the absolute values of the weights
connected to the i-th vertex,

∑n
j=1 |F |ij . Subsequently, the Laplacian matrix of
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the graph is defined as L
′
= D′ − |F |, which plays a critical role in analyzing

the graph’s properties.

Algorithm 1 The step of FRGCN
Input: Training data {Ir}Nr=1
Hyperparameters: Learning rate η, batch size m, parameter γ1,γ2,γ3, updating period T
Initialize parameters W = {wc, wr, wb,Wl, F} of the network
Compute the Laplacian L

′
of the neural network

Compute the Fiedler vector v2 of the Laplacian L
′

Initialize c = 0
while Stopping criterion not met do

Sample minibatch {Ir}mr=1 from training set
Set gradient δ = 0
for i = 1 to m do

Compute gradient δ
′
← δ

+∇Wc,qγ1(φ((HK , AK
xy), (H

∗)))

+∇Wc,qγ2(ξ((HM , AM
xy), (H

∗
M )))

+δ∇F γ3vT
2 L|F |v2

end for
Apply gradient update W←W− ηδ

Update Laplacian matrix L
′

Update c← c + 1
if c = T or C mod T = 0 then

Update second Laplacian eigenvector v2

end if
end while

By introducing the new graph G
′
, we shift the focus from directly learning

about the original edge set E to minimizing the transformed edge set E
′
through

adjustments in F . A higher value of |F | signifies an increased likelihood of the
existence of edges in E

′
. Based on these likelihoods, the nodes are categorized

into two separate subgraphs, aligning the distribution of edges with their prob-
abilities. This shift allows us to transform the challenge of discerning connected
edges into a classical network regularization problem, focusing on the decision
of retaining or discarding each edge within E

′
.

Classic regularization methods include dropout and L1 norm, among others.
Edric [22] proposed leveraging spectral graph theory to improve the connectivity
structure of the multi-layer nonlinear neural network through Fiedler regular-
ization. Their method has demonstrated a significant boost in performance by
minimizing hidden unit co-adaptation, presenting a more systematic approach
compared to random dropouts during neural networks training.

The Fiedler value λ2 is the second smallest eigenvalue of G
′
’s Laplacian ma-

trix L
′
. A smaller λ2 indicates a stronger connectivity in the subgraph [1]. How-

ever, during the training process, Fiedler value λ2 cannot be optimized directly.
Based on the theory of Cheeger’s inequality and Rayleigh-Ritz variational char-
acterization [20, 22], we are able to keep approaching the upper bound of Fiedler
value, as shown in the following equation, by performing eigen-decomposition
and further optimization of λ2.

λ2 ≤ uTL
′
u, (2)
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where equality is achieved when unit vector u = v2, where v2 is the eigen-
vector for λ2. For the vertex set V

′
, we denote V

′
= {S∪S′, S∩S′ = ∅ }, where

S and S′ are two subsets with dense connections within and sparsity between
them.

During training, G
′

is constructed iteratively. The variable u is obtained
through feature decomposition and serves as an upper bound to iteratively ap-
proximate the optimal value of λ2, which is then utilized to update L

′
, which

in turn, aids in estimating u more accurately. The pseudo-code is as shown in
Algorithm 1.

2.4 Skeleton-aware Encoder (SAE)

To incorporate the information of G
′
, we include skeleton-aware encoder in our

framework. From the aforementioned processes, we derive the F vector and Ec

represents the encoded vector output of the TAE. We then apply a basic graph
convolution network to model the relationships across landmarks. The operation
of this graph convolution can be formulated as:

El = ψl(WlEcF ), (3)

where ψl is the skeleton-aware encoder and the Wl is the weights of non-linear
layers, as shown in Fig. 1(b). El is the encoded vector output of skeleton-aware
encoder.

The landmark detection task is reformulated to estimateK landmark heatmaps
HK ∈ RK×Hh×Wh of size Hh ×Wh and offset map AK

xy ∈ R2K×Hh×Wh . Offset
map [32] is used to refine the landmark location. The limbs relation heatmaps
is HM ∈ RM×Hh×Wh and the offset maps is AM

xy ∈ R2M×Hh×Wh . Hh and Wh

denote the size of the feature map. It can also be derived from El.

HK , A
K
xy = DLd(fq(Wq, El)),HM , A

M
xy = DLi(fq(Wq, El)), (4)

fq represents the feature vector of encoding output which aggregates information
from both the target-aware encoder and the skeleton-aware encoder. DLd and
DLi represent the landmark decoder and the limbs decoder, respectively.

2.5 Loss Function

The overall loss to train FRGCN is a combination of three losses: 1) we calcu-
late the Mean Squared Error (MSE) for the predicated landmark heatmap HK

and the relation heatmap HM . H∗K and H∗M represent the ground truth. 2) we
calculate the L1 loss for the landmark offset maps AK

xy and relation offset maps
AM

xy. AK∗
xy and AM∗

xy represent the ground truth. 3) we calculate the Fiedler score
loss uTL

′
u as the upper bound of Fiedler value λ2
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The learning objectives are defined as:

L = LLD + LRL + LFS

= γ1φ((HK , A
K
xy), (H∗K ,AK∗

xy ))

+ γ2ξ((HM , A
M
xy), (H∗M ,AM∗

xy ))

+ γ3u
TL

′
u,

(5)

where γ1, γ2, γ3 are hyperparameters, and are respectively set to 1, 1 and 0.01
for balanced training. LLD represent the loss of HK and AK

xy. LRL represent the
loss of HM and AM

xy. LFS represent the loss of Fiedler regularization.

3 Experiment

In this section, we present the results obtained from two new datasets and one
publicly datasets and conduct ablation studies to scrutinize the individual com-
ponents.

3.1 Datasets and Evaluation

To evaluate the accuracy of landmark detection, we utilized the Mean Radial
Error (MRE) and Successful Detection Rate (SDR) to evaluate the results in
pixels.

Lower limb dataset The lower limb DR images are real-world data collected
from collaborative hospitals. Two physicians manually annotated these images
with 20 landmarks, as depicted in supplementary Figure 1.

When compared to VDNet[31],which integrates femur and tibia segmentation
masks, VitPose [28], and RSGNet[7] as depicted in Table 1 (32, 40, and 48 manual
edges, as well as full connectivity with 210 edges), our method demonstrates a
significant decrease in MRE.

Pelvic dataset The pelvis DR images are the same as above. Each image
is manually annotated with 22 landmarks. Our method achieves a remarkable
reduction in MRE. Specifically, the reductions are 12.318, 1.49, 1.625, 1.239, and
2.389 pixels respectively as shown in supplementary Table1.

Cephalograms dataset The cephalograms dataset, publicly available and
used in the IEEE 2015 ISBI Grand Challenge [25]. The train images and test
images are delineated in prior research [5]. Our approach exhibits significant
performance gains compared to previous works [4, 14, 29], as demonstrated in
suppmentary Table2. Our model consistently achieves a reduction in MRE of at
least 1.6 pixels.

Ablation Study The study explores the skeleton reconstruction using FRGCN.
In order to prove that our proposed FRGCN is effective compared to backbone
and other sparse methods, four ablation experiments are carried out: backbone,
only non-linear layer, randomly dropping values in F , L1 norm of F . However,
the dropout and L1 norm resulted in a decrease in performance, with increases
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Table 1: Comparison of the SOTA methods on lower limb dataset with 20 land-
marks.

Method L− hof L− gt L− lfc L−mfc L− fi L− ltc L−mtc L− ei L− lm L−mm MRE ↓
R− hof R− gt R− lfc R−mfc R− fi R− ltc R−mtc R− ei R− lm R−mm

VDNet 4.808 4.989 5.546 4.936 6.527 5.362 4.047 6.126 6.455 6.082 5.5213.081 4.250 4.725 6.017 6.185 5.838 5.529 5.973 6.857 7.086
VDNet 1.592 2.312 2.779 2.700 4.515 1.858 2.368 2.541 2.085 1.489 2.428+ mask 1.363 1.708 2.599 3.630 4.648 1.455 1.675 2.918 2.316 2.011

Vitpose-S 7.286 11.321 5.826 4.357 5.954 7.135 4.709 4.345 8.790 5.258 6.4517.700 9.881 5.474 4.664 5.649 7.208 4.735 4.180 8.845 5.717

Vitpose-B 2.962 3.437 2.104 2.226 2.165 2.126 2.208 2.383 2.468 2.421 2.4732.958 3.469 2.307 2.193 2.227 2.174 2.256 2.295 2.497 2.589

GCN-32 1.919 1.760 1.556 1.522 1.251 1.557 1.424 1.567 1.426 1.300 1.5241.581 1.817 1.657 1.554 1.240 1.577 1.461 1.563 1.380 1.363

GCN-40 2.375 2.544 1.542 1.490 1.247 1.475 1.426 1.441 1.428 1.265 1.5811.546 2.367 1.603 1.578 1.198 1.562 1.408 1.494 1.340 1.295

GCN-48 2.676 1.761 1.598 1.537 1.268 1.498 1.359 1.469 1.871 1.697 1.5741.520 1.745 1.609 1.531 1.245 1.444 1.428 1.529 1.356 1.334

FRGCN 1.504 1.640 1.543 1.439 1.167 1.437 1.334 1.435 1.336 1.200 1.4191.509 1.690 1.581 1.483 1.201 1.461 1.381 1.527 1.272 1.249

Table 2: Ablation Study in lower limb dataset with 20 landmarks
Method SAE L− hof L− gt L− lfc L−mfc L− fi L− ltc L−mtc

MRE ↓backbone[21] non-linear regularization L− ei L− lm L−mm R− hof R− gt R− lfc R−mfc
layer term R− fi R− ltc R−mtc R− ei R− lm R−mm -

2.984 3.552 2.101 2.200 2.125 2.092 2.185
2.5142.353 2.659 2.621 2.989 3.496 2.276 2.254

2.121 2.153 2.274 2.291 2.731 2.823 -
1.586 3.431 1.509 1.492 1.209 1.435 1.340

1.5341.483 1.358 1.246 1.482 1.712 1.617 1.491
1.195 1.469 1.373 1.560 1.361 1.328 -

dropout
2.271 1.948 1.554 1.456 1.230 1.485 1.311

1.5941.405 1.345 1.253 1.527 3.721 1.620 1.548
1.218 1.446 1.383 1.448 1.352 1.354 -

L1
1.514 1.644 1.490 1.430 1.195 1.454 1.399

1.4861.420 1.348 1.266 2.029 2.242 1.585 1.488
1.204 1.478 1.372 1.505 1.344 1.302 -

FRGCN
1.458 1.628 1.537 1.446 1.166 1.452 1.342

1.4181.441 1.331 1.203 1.501 1.693 1.583 1.477
1.195 1.451 1.389 1.542 1.264 1.249 -

in MRE of 0.176 and 0.068, respectively. These findings are detailed in Table 2,
highlighting the impact of different manipulations of F on the effectiveness of
the graph partitioning process.

The learned structures in different dataset are meaningful indicating strong
connections.For example, the learned skeletal structure of the lower limb has a
left-right approximate complementary connectivity map as shown in supplemen-
tary Figure2.

4 Conclusion

In this paper, we introduce an innovative model, FRGCN, for skeleton recon-
struction in GCN-based landmark detection, signaling a notable shift from tradi-
tional manual methods by applying graph-derived structural constraints. FRGCN
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is rooted in Fiedler regularization, a concept from spectral graph theory.The su-
periority of our model is not limited to theoretical aspects; we also illustrate its
practicality and efficiency through an effective implementation approach, em-
phasizing its real-world applicability. Through extensive experiment, we have
shown that our method surpasses existing state-of-the-art techniques in medical
image analysis, across multiple performance metrics.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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