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Abstract. Ultrasound computed tomography (USCT) is a promising
technique that achieves superior medical imaging reconstruction resolu-
tion by fully leveraging waveform information, outperforming conven-
tional ultrasound methods. Despite its advantages, high-quality USCT
reconstruction relies on extensive data acquisition by a large number
of transducers, leading to increased costs, computational demands, ex-
tended patient scanning times, and manufacturing complexities. To mit-
igate these issues, we propose a new USCT method called APS-USCT,
which facilitates imaging with sparse data, substantially reducing de-
pendence on high-cost dense data acquisition. Our APS-USCT method
consists of two primary components: APS-wave and APS-FWI. The APS-
wave component, an encoder-decoder system, preprocesses the waveform
data, converting sparse data into dense waveforms to augment sample
density prior to reconstruction. The APS-FWI component, utilizing the
InversionNet, directly reconstructs the speed of sound (SOS) from the
ultrasound waveform data. We further improve the model’s performance
by incorporating Squeeze-and-Excitation (SE) Blocks and source encod-
ing techniques. Testing our method on a breast cancer dataset yielded
promising results. It demonstrated outstanding performance with an av-
erage Structural Similarity Index (SSIM) of 0.8431. Notably, over 82%
of samples achieved an SSIM above 0.8, with nearly 61% exceeding 0.85,
highlighting the significant potential of our approach in improving USCT
image reconstruction by efficiently utilizing sparse data.

Keywords: USCT · Sparse data · Upscaling · Image reconstruction.

1 Introduction

Ultrasound Computed Tomography (USCT) is valued in the medical imaging
landscape for its non-invasive nature and the absence of harmful radiation. This
technique harnesses the potential of ultrasound data, which can be interpreted
using either time-of-flight measurements (ray-based approaches) [13] or full wave-
form data [18]. While ray-based USCT offers swift computational processing, it
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Fig. 1: Relationship between sparsity and model performance

tends to compromise on image clarity. On the other hand, Full Waveform Inver-
sion (FWI) significantly improves imaging quality by aligning synthetic wave-
form data with real recorded data, thus achieving a more detailed reconstruction
of tissue sound-speed distributions than is possible with ray-based techniques.
While FWI requires greater computational power, advancements in technology
have made it more practical. The integration of cutting-edge machine learning
and deep learning techniques with the power of high-performance computing has
significantly improved USCT’s effectiveness [14, 17].

Although efficient, ML performance (i.e., the quality of SOS maps) relies
on the highly dense waveform, which requires high-cost equipment with a large
number of transducers (i.e., source and receiver). In Figs. 1 (a), (b), and (c), we
elucidate the inverse relationship between data sparsity and the quality of the
final SOS map reconstruction, demonstrating that SOS imaging quality dimin-
ishes as data sparsity increases. Previous works [11, 7] tried to address the data
sparsity issue through model structure adjustment or algorithm optimization.
However, they have limited performance improvement since the root cause of
low quality (i.e., the high sparsity of data) has not been addressed.

In this work, we propose to explore the feasibility of attaining high-quality
reconstructed SOS maps by improving the given sparse data using an AI-physic
synergy framework, namely APS-USCT. The framework will first upscale sparse
waveform by using an AI approach, called APS-wave, to generate the dense
waveform. To enable this, a training label dataset of dense waveforms is built
by utilizing APS-physics. Then, the generated dense waveform will be fed into
the second AI component, namely APS-FWI, which uses the InversionNet as
backbone architecture and integrates SE-Blocks [10] and source encoding [19].
The SE-Block enhances detail capture in SOS map reconstruction, while the
source coding boosts the model’s learning efficiency. The main contributions of
this paper are as follows:

– We propose an integrated framework, namely APS-USCT, to automatically
reconstruct high-quality speed of sound (SOS) maps from sparse data.

– In APS-USCT, the developed AI module (i.e., APS-wave) and physics mod-
ule (i.e., APS-physic) work collaboratively to convert sparse measurements
into dense waveforms to augment sample density prior to reconstruction,
which can improve data density while maintaining waveform integrity.
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Fig. 2: An overview of the proposed APS-USCT framework: (1) the black-color
path shows the inference of reconstructing the speed of sound (SOS) maps from a
given sparse measurement; (2) the green-color paths show the training procedure
of two AI models associated with APS-wave and APS-FWI components; and (3)
the blue-color path shows the waveform augmentation by using training APS-
physics to generate the training dataset.

– We evaluate APS-USCT on the breast reconstruction dataset, which outper-
forms the state-of-the-art techniques significantly. Compared with the state-
of-the-art approach using dense input waveform, APS-USCT can achieve
2.5× hardware cost reduction (i.e., less number of transducers) with merely
0.0007 SSIM degradation.

2 Method

A. Framework Overview: Fig. 2 shows the proposed framework, which is
composed of three components: (1) APS-wave is an AI model that enhances
sparse waveform data, increasing the density of samples (i.e., the sources or
receivers), called “dense waveform”; (2) APS-FWI is the other AI model for SOS
map reconstruction from the dense waveform; (3) the underline APS-physics is
the key enabler, which converts the SOS map label to dense waveform label. As
such, we have an AI-Physics Synergy USCT framework, denoted as APS-USCT.
In the following, we will introduce each component in detail.
B. APS-wave: The objective of APS-wave is to generate dense waveforms (i.e.,
higher sample density) from sparse ones obtained by fewer sources or receivers.
APS-wave contains two steps: (1) interleave the sparse waveform by inserting 0;
as such, the interleaved sparse waveform will have the same dimension as the
dense waveform; and (2) the interleaved waveform will be processed by a learn-
able encoder-decoder system which converts sparse measurements into dense
waveforms to augment sample density.

The encoder-decoder system contains the forward propagation and backward
propagation, as shown in Fig. 2. For forward propagation, the interleaved wave-
form will go through a 15-layer encoder-decoder neural network to generate the
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dense waveform (please refer to the supplementary for the detailed structure).
For backward propagation, the key is to obtain the ground truth (i.e., dense
waveform) for the given sparse waveform. This is enabled by the APS-Physics
(see later in this section). Then, a Mean Squared Error (MSE) [3] loss function
is applied between the predicted dense waveform and the ground truth, denoted
as “loss wave” in Fig. 2, which will be used to train the neural network.
C. APS-FWI: APS-FWI is to reconstruct the SOS map from the augmented
waveform data, which contains two steps. First, we integrate a learnable source
encoding model, as described by [19], at the forefront of the InversionNet, and
any other baseline methods for fair comparison. This model is tasked with encod-
ing the predicted dense waveform through a random encoding vector. It aims to
approximate the sound speed distribution via stochastic optimization with gra-
dient descent. This process not only leverages the imaging operator’s linearity
for computational efficiency but also enables a significant reduction in compu-
tational demands. Second, the encoded results will be fed to InversionNet [22],
which aims to solve the minimization problem from a given waveform data.

min
ξ∈Rp

1

2N

N∑
n=1

∥Φξ(D
n)−Cn∥2 . (1)

where ϕξ(D
n) is the predicted SOS map on the nth sample by InversionNet ϕ

with weights ξ on input waveform data (Dn), and Cn is the label of the nth

sample. The input Dn is a 3-D tensor D ∈ RI×K×J and dijk ∈ D corresponds to
the measurement data from the ith source, jth receiver, and kth time step. The
output ϕξ(D

n) and label Cn are 2-D tensor Rx×y corresponding to pixel values
of SOS estimates over the field of view.

Kindly note that the InversionNet was originally designed for seismic recon-
struction in the geophysics domain, where the SOS maps describe the subsurface
structures. Although the fundamental FWI problem is the same, applying In-
versionNet to the medical domain encounters new challenges in reconstructing
the details in the structure (e.g., tissue). We propose to bring attention to Inver-
sionNet. Specifically, we optionally add the Squeeze-and-Excitation (SE) Blocks
in each layer of the decoder in InversionNet. The experimental results will show
that the InversionNet with attention (i.e., SE blocks) can better reconstruct
tissue, particularly for sparse data.
D. APS-physics: To support the training process in APS-wave, the APS-
physics is applied to generate high-dimensional waveform data from the SOS
labels in the training dataset by using the acoustic wave equation [5]:

∂2u

∂t2
= c(x)2

∂2u

∂x2
+ S(t) · δ(x− xi

s). (2)

where u(x, t) represents the pressure wave field, c is the speed of sound (i.e.,
SOS) in the medium, t is time, and x is the spatial coordinates in the two-
dimensional space. The term S represents the source function, for which we
employ a Ricker wavelet with 1MHz peak frequency, xi

s represents the ith (i =
1, 2, ..., N) source location coordinates, and δ(·) is a spatial Dirac delta function.
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The recorded data at the jth (j = 1, 2, ...,M) receiver position is described as
Dj(t) = u(x, t) · δ(x − xj

r), where xj
r is the jth receiver location in space. This

equation describes how the pressure wave u propagates over time in a constant
density and isotropic medium. It is also considered the governing equation of
a physics-based FWI algorithm for USCT. Kindly note that by adjusting the
number of sources N and receivers M , we can use the above equation to generate
pressure wave u with different sparsities.

3 Experiment

3.1 Dataset, Implementation, and Evaluation Protocol

To evaluate APS-USCT, we adopt 2D cross-sectional slices of SOS maps ex-
tracted from anatomically realistic numerical breast phantoms (NBPs), which
are constructed in [14] by adapting and extending validated tools from the Vir-
tual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) project [6] for
use in USCT virtual imaging studies. A few examples of 2D cross-sectional slices
extracted from these NBPs are available from [1] Each NBP corresponds to a
speed of sound (SOS) map, where the values were assigned randomly within re-
alistic ranges, varying spatially. The training dataset contains 1,353 NBPs while
there are 41 NBPs in the testing set.

The AI and APS-physics in APS-USCT are implemented by using PyTorch
and Python, respectively. Specifically, the encoder-decoder architecture is adopted
for APS-wave, InversionNet [22] with additional SE-blocks for APS-FWI, and
Forward Modeling algorithm [20] for APS-physics. Please refer to the supple-
mentary for detailed training hyperparameters.

We apply two metrics for quantitative analysis: (1) structural similarity index
measure (SSIM) [21] that reflects the structure of objects in the scene, and
(2) peak signal-to-noise ratio (PSNR) [9] that is the approximate estimation of
human perception of reconstruction quality.

We compare the quality of APS-USCT over three state-of-the-art method-
ologies: (1) InverstionNet [17], (2) USCT-Net [15], and (3) SRSS-Net [16]. Both
USCT-Net and SRSS-Net are based on U-Net, and they are designed for sparse
data. Unlike APS-USCT which generates dense waveforms, USCT-Net ensem-
bles multiple low-quality SOS maps from waveforms taken by different sources.
SRSS-Net uses an additional neural network to process the low-quality SOS
maps, which is similar to the concept of superresolution in computer vision. As
InverstionNet did not consider data sparsity, we applied data interpolation meth-
ods for it, including (1) bicubic interpolation [8] (denoted Bicubi+InversionNet)
and (2) nearest neighbor [12] (denoted Nearest+InversionNet).

3.2 Main Results

A. Quantitative and Qualitative Comparison: Table 1 reports the results
for the waveform captured by 32 sources and 32 receivers, where the data sparsity
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Table 1: Comparisons between existing methods and APS-USCT

Method SSIM PSNR
SSIM

>0.8 (%)
SSIM

>0.85(%)
SSIM

>0.9(%)

InversionNet [17] 0.7340 (0.0120) 22.2312 (0.1931) 17.07 0 0
Bicubic+ InversionNet 0.6836 (0.0037) 20.6849 (0.1840) 4.88 0 0
Nearest+ InversionNet 0.7603 (0.0028) 22.6115 (0.0631) 29.27 4.88 0

USCT-Net [15] 0.7396 (0.0029) 18.5437 (0.4799) 17.07 0 0
SRSS-Net [16] 0.8089 (0.0084) 23.5784 (0.7068) 56.10 21.95 0

APS-USCT 0.8431(0.0003) 25.3040 (0.0861) 82.93 60.98 14.63

Label InversionNet Bicubic+InversionNet Nearest+InversionNet USCT-UNet SRSS-Net APS-USCT

1399.0

1575.0

1434.2

1469.4

1504.6

1539.8

m/s

Fig. 3: Visualization of the SOS map for the methods from the Table 1

is 93.75% compared with the data used in InversionNet [17]. We also report the
proportion of test samples achieving SSIM over 0.8, 0.85, and 0.9.

As shown in the table, InversionNet, the baseline for comparison, recorded an
SSIM of 0.7340 and a PSNR of 22.231. It has 17.07% of samples reaching SSIM
of 0.8, but none reaching 0.85 or 0.9. Bicubic+InversionNet led to a lower SSIM
of 0.6836, but Nearest+InversionNet increased the SSIM to 0.7603 from 0.7340
USCT-Net slightly outperforms InversionNet on SSIM by 0.0056, while it has
a lower PSNR than InversionNet. SRSS-Net can further improve the SSIM to
0.8089. Notably, both Nearest+InversionNet and SRSS-Net have reconstructed
results over 0.85 for SSIM, but none of the existing approaches obtain SOS
maps for SSIM over 0.9. Our proposed APS-USCT significantly enhances both
the model’s overall effectiveness and individual performance: the SSIM achieves
a noteworthy level of 0.8431 and PSNR of 25.3040. More importantly, there are
82.93% of the test data achieve an SSIM above 0.8; moreover, 14.63% of the
test samples attain an SSIM exceeding 0.9. These results underline the substan-
tial improvement and value of APS-USCT that introduces to the breast USTC
imaging reconstruction problem on space data.

B. Results Visualization: We visualize the SOS maps of obtained by differ-
ent image reconstruction approaches in Fig. 3. We selected two breast types (in
terms of the percentage of fibroglandular tissue [4, 2]) for comparison: (1) fatty
breast and (2) dense breast. According to [16], dense breast tissue poses greater
challenges in image reconstruction. We draw a crucial observation from the visu-
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Fig. 4: Results of the ablation studies for APS-wave and APS-FWI

alization results: for the existing models, a model with excellent overall average
performance may still underperform on specific individual instances, which is
even worse than a model has inferior overall performance. In the upper section
of Fig. 3, compared with the ground truth (i.e., label), Bicubic+InversionNet,
USCT-Net, and SRSS-Net struggle to capture the SOS map’s details. In con-
trast, InversionNet, Nearest+InversionNet, and APS-USCT can reconstruct a
clearer SOS map. In the lower part of Fig. 3, we observe that only SRSS-Net
and APS-USCT can capture the image information accurately. This underscores
the limitations of existing approaches in handling diverse breast tissues, with
each method showing ineffectiveness on certain types. Conversely, our method
demonstrates superior robustness and effectiveness, consistently recovering de-
tailed images across different tissue types.

3.3 Ablation Studies

A. Validity of APS-wave: Fig. 4(a) reports the comparison of APS-wave
over the interpolation methods. The column Din → Dout shows the change of
(# sources, # receivers) pair for data acquisition. The column “similarity” is the
cosine similarity between the obtained data and ground truth by APS-physics.

We made several observations. First, traditional interpolation methods demon-
strate limited efficiency. Both Bicubic and Nearest have similarity lower than 0.4,
except (32, 32) → (32, 64), while APS-wave can achieve over 0.9 of similarity
when Din is (32, 32). Second, the higher similarity can be achieved by increasing
Din or decreasing Dout. For all methods, the best performance is achieved by
(32, 32) → (32, 64), and the worst one is by (4, 4) → (32, 512). Third, when Din
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Table 2: Resource-performance co-exploration of APS-USCT against Inverstion-
Net [17] using dense data with higher hardware cost for training and inference

InversionNet [17] APS-USCT Comparison
Draw SSIM # Element D by APS-wave SSIM # Element SSIM Deg. HW Red.

(32,64) 0.7468 96 (32,32)→(32,64) 0.7455 64 0.0013 1.5×
(32,128) 0.7602 160 (32,32)→(32,128) 0.7595 64 0.0007 2.5×
(32,256) 0.8369 288 (32,32)→(32,256) 0.8068 64 0.0301 4.5×
(32,512) 0.8734 544 (32,32)→(32,512) 0.8431 64 0.0303 8.5×

is (32, 32), APS-wave demonstrates superior stability in increasingDout, where it
consistently achieves a similarity above 0.98. But, others suffer a large similarity
drop when increasing Dout from (32, 64) to (32, 512). All these results show the
superiority of APS-wave in generating high-dense waveform. This is one major
contribution that APS-USTC can outperform state-of-the-arts in Table 1.

In Fig. 4(c), we visualize the waveform augmentation from (32, 32) to (32, 512).
The (32, 32) raw waveform exhibits clear breakpoints. We observed that these
breakpoints remained largely unaddressed after applying Bicubic and Nearest
techniques for waveform augmentation. This is because the interpolation meth-
ods simply expand the existing data points in the time domain and do not take
the spatial relation of the source and receivers into consideration. In contrast,
results from APS-wave exhibit a high degree of continuity, which are close to the
(32, 512) label waveform generated by APS-physics (most right-hand side one).

B. Effectiveness of SE-Block with APS-FWI: Results in Fig. 4 (b) show
that for input data with extremely high sparsity, say over 75%, InversionNet with
SE-Block can outperform the one without SE-block. However, with high-density
data, it becomes counterproductive. Consequently, in APS-FWI, this module is
optional—activated for sparse data. This approach provides more options for
designers when they need to handle data with different sparsities.

C. Resource-Performance Co-Exploration for APS-USCT: Last, we
conduct a set of experiments for resource-performance co-exploration on APS-
USCT. As for comparison, we implement InversionNet [17] using dense data for
both training and inference, indicating more hardware resources for data acqui-
sition. Here, the hardware cost is formulated as the number of elements used in
the system, which is the sum of source numbers and receiver numbers.

The exploration results are reported in Table 2. We have several interesting
observations from the table. First, with the same hardware cost, APS-USCT can
continuously improve SSIM from 0.7455 to 0.8431 when APS-wave generates a
more dense intermediate waveform. This calls back to the results in Fig. 4(a),
where APS-wave shows high stability. On the other hand, for InversionNet, such
improvements rely on increasing the number of hardware elements. Second, the
comparison between APS-USCT and InversionNet shows that APS-USCT can
achieve 2.5× hardware cost reduction with merely 0.0007 SSIM degradation.
When the hardware cost reduction increases to 8.5×, the SSIM degradation is
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still less than 0.031. These results demonstrate that APS-USCT can significantly
reduce hardware costs while maintaining high-quality reconstruction SOSs.

4 Conclusion

We developed the APS-USCT framework to improve image reconstruction from
sparse ultrasound waveform, integrating AI with physical principles. APS-USCT
features two key modules: APS-wave and APS-FWI. APS-wave improves sample
density while maintaining waveform integrity. Following APS-wave, the APS-
FWI module, enhanced by source coding and SE-Blocks, significantly improves
reconstruction accuracy. This dual-module USCT method not only ensures an
accurate tissue characterization with minimal hardware cost but also underscores
APS-USCT’s broad applicability in advanced ultrasound imaging technologies.
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