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Abstract. Recent unsupervised domain adaptation methods in medi-
cal image segmentation adopt centroid/prototypical contrastive learning
(CL) to match the source and target features for their excellent ability
of representation learning and semantic feature alignment. Of these CL
methods, most works extract features with a binary mask generated by
similarity measure or thresholding the prediction. However, this hard-
threshold (HT) strategy may induce sparse features and incorrect label
assignments. Conversely, while the soft-labeling technique has proven
effective in addressing the limitations of the HT strategy by assigning
importance factors to pixel features, it remains unexplored in CL algo-
rithms. Thus, in this work, we present a novel CL approach leveraging
soft pseudo labels for category-wise target centroid generation, comple-
mented by a reversed Monte Carlo method to achieve a more compact
target feature space. Additionally, we propose a centroid norm regular-
izer as an extra magnitude constraint to bolster the model’s robustness.
Extensive experiments and ablation studies on two cardiac data sets un-
derscore the effectiveness of each component and reveal a significant en-
hancement in segmentation results in Dice Similarity Score and Hausdorff
Distance 95 compared with a wide range of state-of-the-art methods.

Keywords: Soft-Labeling · Cardiac Image Segmentation · Contrastive
Learning

1 Introduction

Accurate cardiac segmentation is crucial for various medical applications. In
clinical settings, multi-modality medical images are extensively utilized to aid
diagnosis. However, automatic cardiac image segmentation often suffers from
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performance degradation due to a lack of labels. Unsupervised domain adapta-
tion (UDA) avoids laborious manual annotation by transferring the knowledge
learned from a label-rich source domain to the label-deficient target domain.
With the success of the generative adversarial network, adversarial learning (AL)
has been widely used for solving UDA problems [15,17,16,3,18,1]. However, AL-
based methods primarily focus on globally aligning the domain gap without
considering the semantic information shared between the source and target do-
main [21,10]; thus, the performance of AL-based methods are constrained due
to the misalignment of similar regions with different semantic meanings.

Contrastive learning (CL), on the other hand, pushes the pixel features of
different classes apart and pulls pixel features of the same class closer. This pixel-
to-pixel (P2P) alignment enforces semantic discrimination between individual
features and benefits cross-domain feature alignment. Alternative centroid-to-
pixel (C2P) approaches leverage centroids, i.e., the average of the category-wise
features, markedly lowering the memory need. Since ground-truth labels are
only available in the source domain, both approaches require target pseudo-
labels for contrastive pairs, posing challenges, particularly in the early stages of
training, when the model exhibits poor generalizability to the target domain.
Incorrect predictions on target samples can lead to over-confident or erroneous
features [27,9]. To address this issue, Liu et al. [9] and Lee et al. [7] proposed in-
volving only target features with high similarity to the paired source centroid, but
this correspondence can be violated for datasets with large domain gaps. Other
works screened reliable target features using entropy thresholds or high-certainty
prediction scores [23,10]. Both similarity-based and threshold-based methods
take one hot-encoded target pseudo-labels, which is called hard-threshold (HT)
strategy in the following text. However, C2P with HT drastically reduces the
number of features exposed to the network. Moreover, correctly predicted fea-
tures with low certainty may not be utilized for the whole training process,
resulting in severe class imbalance and degradation of the segmentation perfor-
mance [19]. In contrast, the soft-labeling (SL) [22,13,14,27,11] strategy has been
used to circumvent the drawbacks of HT by assigning importance factors to the
pseudo-labels. In classification tasks, label smoothing has been observed to di-
minish the misleading impact of ambiguous pseudo-labels [27,12]. Similarly, label
fusion has been shown to enhance prediction calibration and alleviate overconfi-
dence on out-of-distribution data [14]. Drawing inspiration from these methods,
we introduce the SL strategy for the unsupervised target domain within the CL
technique for UDA in cardiac image segmentation.

Our contributions are summarized as follows: 1) We propose centroid-to-
centroid (C2C) contrastive learning with a soft-labeling strategy (SLCL) to al-
leviate the misclassification and sparse feature space in the conventional C2P
contrastive learning with a hard-threshold strategy (HTCL). 2) As an optimal
category-wise centroid does not guarantee optimal individual features (Fig. 2a),
we introduce the reversed Monte Carlo method (rMC) (Fig. 2b) for a more
compact target feature space. To the best of our knowledge, it is the first
time that the SL strategy and the Monte Carlo method [4] have been utilized



Soft-Labeled CL with Reversed Monte Carlo Method 3

Fig. 1: An overview of the proposed method.

to boost the task performance of CL. 3) Centroid Norm Regularizer (CNR)
is proposed as a complementary regularizer to force the magnitudes of the
source and target features to be consistent. The code is available at https:
//github.com/MingxuanGu/Soft-Labeled-Contrastive-Learning.

2 Method

Due to distribution shifts between the source and target domains, models trained
solely on source data struggle to generalize to target data. Given a set of labeled
source data {xs

i ,y
s
i }N

s

i=1, and unlabeled target data {xt
i}N

t

i=1, where Ns, N t refer
to the number of source and target samples, respectively, UDA aims to bridge
the performance gap between the source and the target domain. Our workflow
is shown in Fig. 1. The segmentation network contains an encoder E, a decoder
D, and a segmentation layer Seg. First, the category-wise source centroids are
calculated as the mean of the source features for each class. Subsequently, rMC
is applied to evenly split the target prediction mask, followed by the calculation
of the target sub-centroids with SL strategy. Finally, the contrastive loss and the
CNR are applied between the source centroid and each target sub-centroid.

2.1 Soft-Labeled Contrastive Learning (SLCL)

Current CL methods [9,7,10,6,8,21] generate the source centroid (Cs) and target
centroid (Ct) with a masked average pooling of the class features. The features
are filtered by either similarity-based or threshold-based criteria. This binary
classification may introduce incorrect pseudo-labels and reduce features available
during training, resulting in scattered classification in cardiac image segmenta-
tion and inaccurate diagnosis in clinical applications. In contrast, SL strategy
converts this binary classification into a regression problem by putting soft im-
portance weights on the features, which smooths the negative effect of the am-
biguous pseudo-labels and makes full use of all the features. We formulate our

https://github.com/MingxuanGu/Soft-Labeled-Contrastive-Learning
https://github.com/MingxuanGu/Soft-Labeled-Contrastive-Learning
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(a) (b)

Fig. 2: Illustration of feature space before and after centroid-to-centroid (C2C)
alignment. (a) Conventional C2C aligns the source and target centroids, whereas
the individual features are still scattered. (b) A schematic of the proposed rMC
method. Each target centroid from the subspace with the source centroid helps
to generate a more compact target space.

proposed target and source centroid as

Ct[k] =

∑B
n=1
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n=1
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l pt
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l fsn[l]y

s
n[l, k]∑B
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∑H×W
l ys

n[l, k]
, (1)

where k is the class index, B denotes the batch size, l is the pixel location, f
refers to the decoder feature, ys is the source ground-truth label, and pt is the
softmax prediction of the target domain which is taken as the importance weight
for each target feature. The choice of the importance weight keeps the algorithm
lightweight and easy to implement. Moreover, including pt in the calculation of
the target centroids opens a second path for the network to optimize the target
feature, i.e., the prediction score, providing another degree of freedom when
updating the model parameters. Since the ground-truth labels are provided for
the source domain, we calculate the source centroid with HT. We progressively
refine the source centroid by the exponential moving average with a momentum
of 0.9.

2.2 Reversed Monte-Carlo Method (rMC)

When applying the C2C contrastive learning, once the centroids are aligned,
the network can no longer provide enough gradient to further update the pixel
features (Fig. 2a). To solve this problem, we consider using the Monte Carlo
method [4] but in a reversed way. The Monte Carlo method can be used to
estimate the expectation with a limited number of samples.

E[X] =

∫
Ω

xp(x)dx → E[X] ≈ X̄ =
N∑
i=1

xi/N, (2)

where X indicates the random variable, Ω is the variable space, N denotes the
number of samples, xi refers to the sampled objects. The variance of this es-
timation is calculated as Var(X̄) = Var(X)/N. It can be reduced by increasing
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the number of samples N . In other words, if we reduce the number of samples,
we can increase the chance of inducing a higher deviation from the expecta-
tion, i.e., the category-wise centroid in CL. Then, the individual features can be
further optimized. As we can see in Fig. 2b, we reduce the number of samples by
splitting the pixel features into P partitions. The sub-centroid Ct,i significantly
deviates from the source centroid, which induces higher gradients during back-
propagation. After optimization, the feature space is more compact. Finally, the
contrastive loss is applied to each sub-centroid:

L(i)
CL = LCL(C

s,Ct,i), (3)

where i ∈ {1, 2, ..., P}. The best result is achieved when P = 2. A parameter
study on P is provided in Fig. 4a. The contrastive loss is defined as a modified
InfoNCE [5,6]:

LCL(C
s,Ct) = − 1

K

K∑
k

log
h(Cs[k],Ct[k])

h(Cs[k],Ct[k]) +
∑K

r ̸=k
q∈{s,t}

h(Ct[k],Cq[r])
, (4)

where K is the total number of classes, and h(u,v) = exp( u·v
∥u∥2∥v∥2

/τ) is the
cosine similarity. We empirically set τ to 0.1 [2].

2.3 Centroid Norm Regularizer (CNR)

The cosine similarity only measures the angle between two vectors (Eq. 4), while
the impact of the magnitude is ignored, which may result in separate source and
target feature spaces and sub-optimal performance. In this work, we propose the
CNR to regularize the magnitude of the target (sub-) centroids:

L(i)
CNR = LCNR(C

s,Ct,i) =
1

K

K∑
k=1

(∥Cs
k∥2 −

∥∥∥Ct,i
k

∥∥∥
2
)2, (5)

where i is the partition index. We consider the source centroids to be the ground
truth of the target centroids. Therefore, the gradient of the CNR only flows
through the target path. Moreover, cross-entropy and Jaccard loss are used for
supervised learning in the source domain. We sum up the overall loss function
as:

Ltotal = Lseg + λCL

P∑
i=1

L(i)
CL + λCNR

P∑
i=1

L(i)
CNR. (6)

λCL and λCNR are the regularization weights of the corresponding loss terms.

3 Experiments and Results

Datasets Cardiac segmentation is conducted on two public datasets, namely
MS-CMRSeg [24] and CT-MR (MMWHS) dataset [25]. Specifically, the MS-
CMRSeg includes 45 MR volume pairs from short-axis balanced Steady-State
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Table 1: The quantitative comparison results on the MS-CMRSeg dataset [24].
Src-Only is the baseline trained only with Lseg. Supervised refers to the
supervised learning on the target data. The best scores are highlighted in bold.

Volumetric DSC ↑ Volumetric HD95 (mm)↓
Methods MYO LV RV AVG MYO LV RV AVG
Src-Only 0.434 0.614 0.538 0.529 13.251 20.427 19.390 17.689
Supervised 0.806 0.913 0.834 0.851 4.342 4.807 8.440 5.863
AdaptSeg [15] 0.629 0.826 0.716 0.724 9.084 9.317 11.433 9.945
Advent [17] 0.660 0.824 0.748 0.744 7.988 8.949 11.806 9.581
AdaptEvery [16] 0.677 0.859 0.788 0.775 8.007 7.189 11.809 9.002
MPSCL [9] 0.677 0.856 0.750 0.761 7.524 8.016 11.773 9.104
BCL [7] 0.722 0.874 0.797 0.798 6.568 8.035 10.076 8.226
SLCL (ours) 0.743 0.884 0.820 0.816 8.169 6.397 9.634 8.067

Fig. 3: The qualitative results of the cardiac segmentation of all the comparison
methods on the MS-CMRSeg dataset [24]. The raw images are enhanced for
better visualization. (Best viewed in color)

Free Procession (bSSFP) and Late-gadolinium enhancement (LGE), which are
utilized as source and target domain, respectively; Five samples of MS-CMRSeg
are for validation, and the remaining 40 samples are split evenly for training and
testing. The CT-MR dataset contains 20 CT (source) and MR (target) volumes
with ground-truth labels, whereas the remaining 32 CT and 25 MR volumes
were automatically labeled [26] and only used for training. The dataset sampled
16 slices from each CT and MR volume. Gold standard MR images are evenly
split for training and testing. Two-fold cross-validation is utilized for evaluation.
For both datasets, three categories are segmented: the myocardium (MYO), the
left ventricle (LV), and the right ventricle (RV).

Implementation details All the experiments are implemented with Python
3.9, PyTorch 1.10, CUDA 12.2, and executed on NVIDIA A100. The same UNet
architecture (pretrained ResNet50 on ImageNet for the encoder) is used for all
the reference methods for a fair comparison. We conduct a random search for all
the methods and set the hyperparameters empirically for the best results. We use
an SGD optimizer and a batch size of 32. Only flipping and rotation [n×90◦] are
used for data augmentation. Table 3 shows the detailed hyperparameter settings.
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Table 2: The quantitative comparison results on CT-MR dataset [25]. The best
scores are highlighted in bold.

DSC ↑ HD95 (mm)↓
Methods MYO LV RV AVG MYO LV RV AVG
Src-Only 0.191 0.694 0.341 0.409 29.574 34.498 29.543 31.205
Supervised 0.724 0.872 0.821 0.806 15.563 15.852 19.168 16.861
AdaptSeg [15] 0.582 0.786 0.603 0.657 22.563 24.972 20.615 22.717
Advent [17] 0.608 0.854 0.758 0.740 13.848 12.618 16.031 14.166
AdaptEvery [16] 0.645 0.853 0.779 0.759 12.026 11.829 15.155 13.003
MPSCL [9] 0.615 0.866 0.728 0.736 13.126 12.828 16.968 14.307
BCL [7] 0.570 0.794 0.686 0.683 27.891 22.767 24.563 25.074
SLCL (ours) 0.606 0.869 0.807 0.761 13.054 11.737 13.287 12.693

(a) (b)

Fig. 4: Experiment results on MS-CMRSeg dataset [24]. (Best viewed in color)
(a) Parameter study on the partition number P of rMC. P = 1 refers to Soft-
Labeled Contrastive Learning (SLCL) without rMC. (b) Ablation study on the
threshold.

3.1 Performance on Cardiac Image Segmentation

We evaluate the segmentation performance with Dice Similarity Score (DSC)
and Haudorff Distance 95 (HD95). The quantitative comparison of different
reference methods on MS-CMRSeg [24] is provided in Table 1. The AL-based
methods (AdaptSeg [15], Advent [17], AdaptEvery [16]) generally achieved lower
DSC and higher HD95 than CL-based methods due to their semantic agnostic
characteristics. Both CL-based methods (MPSCL [9], BCL [7]) generate cen-
troids with C2P and HT, which induces a sparse feature space, and limits the
information exposed to the network. Our method outperforms the other feature-
alignment methods by a large margin both in DSC and HD95. Similar results
can be observed qualitatively in Fig. 3. More qualitative results are provided in
the supplementary file.

Quantitative results on the CT-MR dataset [25] are shown in Table 2. The
models perform worse on this dataset due to a larger domain gap and less data.
The performance of BCL [7] drops most significantly. BCL [7] proposed a dy-
namic pseudo-label to correct the error between the source and target centroid,
while it is not guaranteed that the dynamic labels are denser and more accu-
rate. This also raises the value of finding a more robust pseudo-labeling strategy
for CL. In comparison, the proposed method is robust across different datasets
with different degrees of domain shift. The qualitative results of the CT-MR
dataset [25] are provided in the supplementary file.
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Fig. 5: t-SNE visualization. Left: t-SNE of SLCL without rMC. Right: t-SNE of
the proposed SLCL with rMC. (Best viewed in color)

Table 3: The detailed hyperpa-
rameter settings of the proposed
method during training.

MS-CMRSeg [24] CT-MR [20]
learning rate 2e-2 8e-4
λCL 1 1
λCNR 2e-3 4e-5

Table 4: The results of the ablation study
on different components on MS-CMRSeg
dataset [24].

DSC ↑ HD95 (mm) ↓
Src-Only 0.529 17.689
HTCL (HT+rMC+CNR) 0.769 11.429
SLCL w/o CNR (SL+rMC) 0.796 9.179
Proposed SLCL (SL+rMC+CNR) 0.816 8.067

Fig. 4a shows a parameter study on the number of partitions. When we ap-
ply rMC, as we increase the partition number, the number of samples for each
partition drastically decreases, which results in a large bias in the centroid and
induces a performance drop. To interpret this observation from another perspec-
tive, when P equals the number of samples, C2C is degraded to C2P, which im-
pairs the rectification ability of the SL strategy. The proposed algorithm reaches
the optimum performance under the trade-off between the feature compactness
and centroid stability when P equals 2. Fig. 5 shows the t-SNE plots for the pro-
posed SLCL with and without rMC. It is illustrated that with rMC, the feature
space is more compact and aligned between source and target feature space.

3.2 Ablation Study on MS-CMRSeg

Although the proposed SLCL discards the threshold used in the HT strategy, we
conduct an ablation study (Fig. 4b) on MS-CMRSeg [24] to show the impact of
the threshold on both SL and HT pseudo-labeling strategies. For HTCL, as we
increase the threshold, the feature space gets sparse, and the noise dominates
the performance. As we further increase the threshold, the uncertain pseudo-
labels are gradually removed, resulting in a better performance. For the proposed
SLCL, as we decrease the threshold, the model gets more information from
the features. Meanwhile, the SL strategy makes the model more robust to the
noisy pseudo-labels, thus achieving better performance. CNR helps the model to
achieve even better results compared to the model without CNR (SL w/o CNR).

Table 4 shows the quantitative results of an ablation study on the proposed
components. Performance degrades as we either switch SL to HT or remove CNR
from the proposed SLCL, showing the effectiveness of each component.
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4 Conclusion

We propose a simple yet effective CL method that combines SLCL with a rMC
and a CNR. Its simplicity enables the combination with any UDA method to
improve the performance further. Abundant experiments and ablation studies
on the two public cardiac datasets validate the effectiveness and robustness of
the proposed method.
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