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Abstract. Segmenting medical images is critical to facilitating both pa-
tient diagnoses and quantitative research. A major limiting factor is the
lack of labeled data, as obtaining expert annotations for each new set
of imaging data and task can be labor intensive and inconsistent among
annotators. We present CUTS, an unsupervised deep learning frame-
work for medical image segmentation. CUTS operates in two stages. For
each image, it produces an embedding map via intra-image contrastive
learning and local patch reconstruction. Then, these embeddings are par-
titioned at dynamic granularity levels that correspond to the data topol-
ogy. CUTS yields a series of coarse-to-fine-grained segmentations that
highlight features at various granularities. We applied CUTS to retinal
fundus images and two types of brain MRI images to delineate struc-
tures and patterns at different scales. When evaluated against predefined
anatomical masks, CUTS improved the dice coefficient and Hausdorff dis-
tance by at least 10% compared to existing unsupervised methods. Fi-
nally, CUTS showed performance on par with Segment Anything Models
(SAM, MedSAM, SAM-Med2D) pre-trained on gigantic labeled datasets.
Code is available at https://github.com/KrishnaswamyLab/CUTS.
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1 Introduction

Medical image segmentation plays an increasingly crucial role in both research
and clinical settings in a wide range of imaging modalities, including microscopy,
X-ray, ultrasound, optical coherence tomography (OCT), computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET),
and others [13]. With high-quality image segmentation, clinicians can diagnose
and monitor disease progression more easily to improve patient care. Traditional
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medical image segmentation methods rely on hand-crafted features [12, 29] or
predefined atlases [18]. These methods are gradually being replaced by deep
learning [15] as supervised neural networks demonstrate superior performance
compared to feature-based methods and less overhead than atlas-based meth-
ods. Although supervised neural networks have been widely successful in image
segmentation in recent years, there are several problems in applying them to
medical images, particularly to make clinical inferences. First, these networks
are dependent on expert annotations, so they require a large number of labels to
adequately cover the variance of the data to produce reliable segmentations [11].
Second, supervised networks trained on one set of annotated images may not be
able to generalize to similar images collected in very slightly different contexts,
such as in different patient populations or on different devices [1]. Third, the
desired segmentation granularity may vary across use cases even if the exact
same image is concerned; for example, localizing a brain tumor would require
finer segmentation compared to measuring the brain volume, yet this need is not
easily accommodated by supervised approaches without updating the labels.

To address these issues, we propose an unsupervised framework that com-
bines recent advances in representation learning with the frontiers of data ge-
ometry and topology. First, a convolutional patch encoder learns an embedding
space from the image patches. Then, the learned embedding space serves as a
feature-rich foundation for multiscale topological data coarse-graining. It not
only circumvents the need for costly expert annotations and alleviates cross-
domain generalization problem, but also produces multigranular segmentations
which can potentially target multiple regions of interest without supervision.

2 Related Works

Before the introduction of contrastive learning, most unsupervised learning meth-
ods for medical image segmentation either learn from pseudo-labels generated by
traditional methods [26] or perform registration onto an atlas [30]. Contrastive
learning opens up many opportunities in this field. However, commonly used
contrastive learning methods such as SimCLR [6] and SimSiam [7] focus on ex-
tracting image-level representations with an inter-image contrastive objective.
These methods undermine intra-image features and are therefore unsuitable for
tasks that require closer scrutiny within the same image, such as image segmen-
tation. To adapt contrastive learning for image segmentation, [5] and [31] learn
image and patch representations through global and local contrastive training.
Both methods include a supervised fine-tuning stage, which still depends on
labels. DFC [19] and STEGO [14] are two leading unsupervised segmentation
methods that leverage contrastive learning concepts. Although STEGO can be
trained without labels, it relies on pre-trained vision backbones for knowledge
distillation, which is not a requirement in our method. DFC is by far the most
similar to our approach, but with two key differences. First, DFC contrasts on
pixels, while we operate on pixel-centered patches, which is semantically and
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textually richer. Second, we perform multiscale coarse-graining that produces
many segmentation maps at various granularities.

3 Methods

Fig. 1. The CUTS Framework. (A) Overview. (B) Pixel-centered patches are mapped
into the embedding space, jointly optimized by two objectives. (C) Positive and nega-
tive patch pairs are selected based on proximity and structural similarity. (D) Diffusion
condensation coarse grains embedding vectors at a series of granularities. (E) Segmen-
tation for any granularity can be performed by mapping cluster assignments to the
image space. Multiscale PHATE (MS-PHATE) [22] is used for visualization.

The CUTS framework contains two stages (Fig. 1(A)). In the first stage,
it encodes each pixel along with the local neighborhood around it, denoted as
a “pixel-centered patch”, into a high-dimensional embedding space by jointly
optimizing contrastive learning and autoencoding objectives (Fig. 1(B)). Unlike
most contrastive learning methods that learn from augmented versions of full
images, CUTS learns from regions within the same image (Fig. 1(C)). This em-
phasizes learning of local, intra-image features instead of invariance over known
image transformations or noise models. This is especially critical for medical
images, since they are globally homogeneous (i.e., images from different partic-
ipants capture the same body part) yet locally heterogeneous (i.e., nuances in
structures or textures within small areas of the image are essential). In the second
stage, these embedding vectors are coarse-grained to many levels of granularity
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by diffusion condensation [3, 21]. Metastable granularities can be automatically
identified from the condensation homology as granularities with zero topological
activity [21]. Segmentation is performed by assigning labels to pixels that corre-
spond to clusters arising from a particular metastable granularity (Fig. 1(D-E)).

Learning an embedding space for pixel-centered patches CUTS uses a
convolutional neural network as a patch encoder to map pixel-centered patches
from the image space to a latent embedding space. It has convolution, batch
norm, activation but no pooling – to ensure identical spatial dimension between
the image and feature map. Two objectives are jointly optimized.

Intra-image contrastive loss For any anchor patch Pij ∈ Rp×p×c centered at
coordinates (i, j), we sample positive patches {P+

ij} and negative patches {P−
ij}.

Let f denote the convolutional encoder. Anchor embedding zij = f(Pij), positive
embeddings Ω+ := {z+ij} = {f(P+

ij )}, and negative embeddings Ω− := {z−ij} =

{f(P−
ij )}. After projecting the patches to the latent embedding space, we can

perform contrastive learning on their respective embedding vectors z+ij and z−ij .
We mine these positive and negative patches using a combination of a proximity
heuristic and an image similarity metric. Only patches nearby (within ± one
patch size) and structurally similar (SSIM [16] > 0.5) to the anchor patch are
considered positive patches. The contrastive loss is defined as:

lcontrast = − log
pos

neg
, pos =

∑
z+
ij∈Ω+

esim(zij ,z
+
ij)/τ , neg =

∑
z−
ij∈Ω−

esim(zij ,z
−
ij)/τ

Local patch reconstruction loss In addition to the contrastive loss, we ensure
that our embedding of each pixel-centered patch retains information about the
patch around it through a reconstruction loss. For an embedding zij ∈ Rd, the
patch reconstruction loss is lrecon = ||Pij − frecon(zij)||22, where frecon(·) : Rd →
Rp×p×c is a patch reconstruction module. In implementation, frecon(·) is a two-
layered fully-connected network with ReLU activation.

Final objective function The final objective function balances the two losses with
a weighting coefficient λ ∈ [0, 1]. loss = λ · lcontrast + (1− λ) · lrecon.

Hyperparameters Hyperparameters (patch size, number of patches, contrastive
loss coefficient) are empirically selected. See Supplementary Materials.

Coarse-graining for multiscale segmentation For each image patch Pij

centered at coordinates (i, j), the patch encoder encodes it to zij ∈ Rd. We
can assign them to n different clusters {c1, c2, ..., cn} using a clustering algo-
rithm cls(·) : Rd → R. Then, we can create a label map L ∈ RH×W where
Lij = cls(zij). The label map L will be the end product of CUTS segmentation.
Notably, with diffusion condensation, cls(·) changes throughout the process, and
therefore we can generate a rich set of labels. Diffusion condensation [3, 21] is
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a dynamic process that sweeps through various levels of granularities to iden-
tify natural groupings of data. It iteratively condenses data points towards their
neighbors through a diffusion process, at a rate defined by the diffusion probabil-
ity between the points. Unlike most clustering methods, diffusion condensation
constructs a full hierarchy of coarse-to-fine granularities where the number of
clusters at each granularity is not arbitrarily set but rather inferred from the
underlying structure of the data.

We can identify the segments that occur consistently over the series of seg-
mentations, called persistent structures. This can be achieved by rank-ordering
different segments based on their persistence levels, which is quantified by the
number of consecutive diffusion iterations in which the segment stays intact and
refrains from being merged into another segment.

For binary segmentation, we need to convert the multi-class label maps to
binary segmentation masks. Following standard practices [14, 24], we use the
ground truth segmentation mask to provide a hint on how to select the fore-
ground for each image. Specifically, we iterate over each foreground pixel in the
ground truth mask and find the most frequently associated cluster of the cor-
responding embedding vector. Then we set all pixels whose embeddings match
that cluster label as the foreground. This process effectively finds the most prob-
able cluster label if a pixel is randomly selected from the foreground region of
the ground truth and thus is objective and unbiased.

4 Experiments

We prepared three medical image datasets to evaluate our proposed framework.
The datasets are chosen to demonstrate the breadth of applications, as they cover
variation in color channels (e.g., RGB versus intensity-only), imaging sequences
(e.g., T1 versus T2 FLAIR), and organs of interest (e.g., eye versus brain).
Retinal fundus images We used retinal color fundus images of eyes with Geo-
graphic Atrophy (GA) in the age-related eye disease study group [10, 28]. GA
regions were segmented by two graders and reviewed by a retinal specialist,
resulting in 56 retinal images with accurate segmentations.
Brain MRI images (ventricles) We used MRIs of patients from the Alzheimer’s
Disease Neuroimaging Initiative study [9]. A radiologist manually segmented the
brain ventricles on 100 T1-weighted brain MRIs for our study.
Brain MRI images (tumor) We used MRIs of patients with glioma that were
scanned by several healthcare facilities. Tumor regions of 200 fluid-attenuated
inversion recovery (FLAIR) brain MRIs are segmented by trained medical stu-
dents and finalized by a board-certified attending neuroradiologist.

Qualitative results on multigranular segmentation As shown in Fig. 2,
our multiscale segmentation method provides delineation of image structures at
various granularities. The diffusion condensation process starts when all pixels
are isolated from each other (pure noise, not shown in the figure). After a few
iterations, fine-grained structures begin to emerge, as the most similar pixels are
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Fig. 2. Multigranular segmentation (odd rows) captures distinctive patterns at various
scales. Multiscale PHATE (even rows) is used to visualize the diffusion condensation
process. The results of CUTS + spectral k-means clustering (“k-means”) and CUTS +
diffusion condensation persistent structures (“diffusion-P”) are also shown for reference.

clustered together (leftmost columns starting from the third column). On these
finest scales, even the smallest structures are delineated, such as the retinal ves-
sels in the retinal images (first row). Moving toward the coarser scales, anatom-
ical structures arise as tiny patterns collectively form larger groups. Signature
structures include the optic disc and geographic atrophy in the retinal images
(first row), white and gray matter in the brain ventricles images (third row), and
tumor region in the brain tumor images (fifth row). Detection of these anatom-
ical structures can facilitate automatic measurements of their sizes, shapes, and
locations for clinical interventions. On the coarser side of the spectrum, most
structures are iteratively merged through diffusion condensation, leaving only
the most distinctive objects in the image. The final resolution (rightmost col-
umn) identifies the two remaining clusters which correspond to the foreground
and background, respectively.

Qualitatively, we show that CUTS is able to automatically detect meaningful
structures and patterns at multiple granularities within medical images of various
modalities. It enables users to determine their desired level of detail without the
necessity of manually annotating data for the model’s training.

Qualitative and quantitative results on binary segmentation We com-
pared the performance of CUTS on the three datasets with several alternative
methods. We first compared it with three traditional unsupervised methods:
Otsu’s watershed [29], Felzenszwalb [12], and SLIC [2]. We then compared with
DFC [19] and STEGO [14], two recent unsupervised models based on deep learn-
ing. For each experiment, we re-trained DFC, STEGO, and CUTS on the images
only. Next, we compared against the Segment Anything Model (SAM) [20, 24]
which was pre-trained on 11 million images and 1.1 billion masks, as well as its
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medical-image variants (MedSAM [23]/SAM-Med2D [8]) pre-trained on 1.6/4.6
million images and 1.6/19.7 million masks, respectively. For SAM variants, we
provided a center point of the ground truth label as a prompt for segmentation
of each image [24]. Lastly, for reference, we benchmarked a random labeler as the
performance lower bound and two fully supervised methods, UNet [27] and nn-
UNet [17], as the upper bound. For coarse-graining of the pixel embeddings, we
also implemented a spectral k-means clustering [32] alternative, which segments
at only one granularity level. For a fair comparison, we applied the same bina-
rization approach described in the Methods section to all unsupervised methods.

Fig. 3. Qualitative segmentation comparison. Green curves outline the ground truth
labels while blue or red curves outline the predictions. “diffusion-B”: the best diffusion
condensation granularity. “Sup.”: supervised “P.T.”: pre-training. “+bbox”: using
bounding box as input; included for completeness but would be unfair for comparison.

Geographic atrophy segmentation in retinal fundus images Our first experiment
aims to segment regions of geographic atrophy (GA) in retinal fundus images.
GA is an advanced stage of age-related macular degeneration (AMD) charac-
terized by progressive macula degeneration. CUTS accurately selects the region
of atrophy. Qualitatively, CUTS is better at delineating the boundaries of at-
rophy compared to all other unsupervised methods (Fig. 3). The quantitative
results (Table 1) also confirmed this observation. CUTS created better segmen-
tations than other unsupervised methods, as indicated by a higher dice score
and a lower Hausdorff distance.

Ventricle segmentation in brain MRI images In our next experiment, we tried
to segment the brain ventricles in MRI images of patients at various stages of
Alzheimer’s disease. This task is considered clinically important because the
volume of the brain ventricles can predict the progression of dementia [4, 25].
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Table 1. Quantitative comparisons from 3 random seeds. Among unsupervised meth-
ods, the best is bolded and runner-up is underscored. §Using bounding box instead of
point as input; included for completeness but would be unfair for comparison. ‡Diffusion
condensation will not run since #features = 1 for each pixel in single-channel images.

Retinal Atrophy Brain Ventricles Brain Tumor
Deep learning? Topological? DSC ↑ HD ↓ DSC ↑ HD ↓ DSC ↑ HD ↓

Unsupervised, without learning
Watershed (IEEE TPAMI′91 [29]) 0.192±0.000 56.32±0.00 0.781±0.000 30.25±0.00 0.073±0.000 95.42±0.00

Felzenszwalb (IJCV′04 [12]) 0.592±0.000 27.60±0.00 0.759±0.000 44.80±0.00 0.316±0.000 21.41±0.00

SLIC (IEEE TPAMI′12 [2]) 0.567±0.000 28.76±0.00 0.475±0.000 37.96±0.00 0.242±0.000 47.51±0.00

Unsupervised, with learning
DFC (IEEE TIP′20 [19]) 0.300±0.020 46.47±1.42 0.631±0.024 34.28±0.57 0.197±0.004 52.51±0.09

STEGO (ICLR′22 [14]) 0.649±0.025 34.12±4.06 0.725±0.050 12.59±4.43 0.176±0.104 57.16±14.09

(Ours) CUTS + Spectral k-means 0.675±0.014 26.82±0.88 0.774±0.008 8.31±0.23 0.432±0.010 33.94±0.65

(Ours) CUTS + Diffusion (pers.) 0.604±0.003 21.69±0.44 0.495±0.002 13.36±0.60 0.390±0.004 33.66±0.24

(Ours) CUTS + Diffusion (best) 0.741±0.007 17.76±0.13 0.810±0.006 7.17±0.18 0.486±0.007 25.16±1.12

Ablation: image pixels instead of latent embeddings
Image pixels + Spectral k-means 0.560±0.000 37.97±0.00 0.386±0.000 26.11±0.00 0.240±0.000 51.69±0.00

Image pixels + Diffusion (pers.) 0.405±0.000 61.67±0.00 ‡ ‡ ‡ ‡
Image pixels + Diffusion (best) 0.538±0.000 45.16±0.00 ‡ ‡ ‡ ‡

Lower bound: random label
Random 0.132±0.000 78.45±0.07 0.149±0.000 61.40±0.02 0.057±0.000 95.53±0.02

Upper bound: supervised
SAM (ICCV′23 [20], MedIA′23 [24]) 0.924±0.000 9.18±0.01 0.644±0.003 30.24±0.19 0.405±0.000 36.14±0.14

SAM-Med2D (ArXiv [8]) 0.548±0.001 14.69±0.00 0.736±0.000 17.38±0.02 0.591±0.001 12.93±0.01

SAM-Med2D+bbox§ 0.882±0.000 5.31±0.00 0.849±0.000 9.78±0.00 0.686±0.000 8.74±0.00

MedSAM (Nat. Commun.′24 [23]) 0.079±0.000 32.29±0.02 0.053±0.000 64.00±0.04 0.088±0.001 33.54±0.02

MedSAM+bbox§ 0.889±0.000 5.21±0.00 0.829±0.000 10.60±0.00 0.702±0.000 7.61±0.00

UNet (MICCAI′15 [27]) 0.965±0.014 3.78±1.08 0.989±0.001 1.05±0.10 0.867±0.016 8.84±1.10

nnUNet (Nat. Methods′21 [17]) 0.937±0.014 6.00±1.35 0.984±0.005 2.10±0.42 0.834±0.024 8.64±1.60

Qualitatively, CUTS delineated the brain ventricles in a wide variety of set-
tings (Fig. 3). Due to the general trend that ventricles appear consistently darker
than the rest of the image, most methods are able to achieve good overall perfor-
mance on several cases. However, our method usually delineates the boundaries
better than competing methods, especially for images showing noncontiguous
ventricles. The quantitative results (Table 1) also indicate the superior perfor-
mance of CUTS over other unsupervised methods.

Tumor segmentation in brain MRI images Our final experiment investigated
a different segmentation target in brain MRI images – brain tumors, or more
specifically, glioma. Accurate segmentation of tumor areas is crucial for the diag-
nosis and treatment of brain tumors. This process can help radiologists provide
vital details about the size, position, and form of tumors, which is important to
determine the most appropriate course of clinical care. Qualitatively, our method
demonstrated superior segmentation compared to other unsupervised methods,
as shown in Fig. 3. As a general observation, competing methods struggle to
identify tumors, although they manage to segment the ventricles in a similar
imaging modality. This disparity in performance was anticipated, given the pro-
nounced complexity associated with tumor segmentation compared to ventricles,
due to considerably more subtle contrast and morphological distinctions. Nev-
ertheless, CUTS overcomes the inherent challenges and successfully segments
tumor regions. Quantitatively, CUTS led the other unsupervised methods by a
larger margin compared to the less demanding task of ventricle segmentation.
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More impressively, CUTS achieved better results than every SAM variant on
most datasets under fair comparison without relying on billions of annotations.

Ablation study We confirmed that applying diffusion condensation or spectral
k-means on the raw image pixels is suboptimal compared to CUTS (Table 1).

5 Conclusion

CUTS is a deep learning and topological framework that identifies important
medical image structures with self-supervision. Despite the emergence of foun-
dation models, such as variants of SAM, CUTS remains relevant and insightful.
It is lightweight and does not require extensive annotation and pre-training in
large compute warehouses. Additionally, it is clear that foundation models neces-
sitate domain-specific fine-tuning for tasks not covered by the initial supervised
pre-training, which highlights the relevance of approaches like CUTS that inves-
tigate objectives and techniques to inject the correct inductive biases. Therefore,
CUTS offers a practical alternative in the evolving landscape of medical imaging.
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els compared to state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence 34(11), 2274–2282 (2012)

3. Brugnone, N., Gonopolskiy, A., Moyle, M.W., Kuchroo, M., van Dijk, D., Moon,
K.R., Colon-Ramos, D., Wolf, G., Hirn, M.J., Krishnaswamy, S.: Coarse graining of
data via inhomogeneous diffusion condensation. In: 2019 IEEE International Con-
ference on Big Data (Big Data). pp. 2624–2633. IEEE (2019)

4. Carmichael, O.T., Kuller, L.H., Lopez, O.L., Thompson, P.M., Dutton, R.A., Lu,
A., Lee, S.E., Lee, J.Y., Aizenstein, H.J., Meltzer, C.C., et al.: Ventricular volume
and dementia progression in the cardiovascular health study. Neurobiology of aging
28(3), 389–397 (2007)

5. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global
and local features for medical image segmentation with limited annotations (2020)

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive
learning of visual representations (2020)

7. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
15750–15758 (2021)

8. Cheng, J., Ye, J., Deng, Z., Chen, J., Li, T., Wang, H., Su, Y., Huang, Z., Chen, J.,
Jiang, L., et al.: Sam-med2d. arXiv preprint arXiv:2308.16184 (2023)

9. Crawford, K.L., Neu, S.C., Toga, A.W.: The image and data archive at the labora-
tory of neuro imaging. Neuroimage 124, 1080–1083 (2016)

10. Davis, M.D., Gangnon, R.E., Lee, L.Y., Hubbard, L.D., Klein, B., Klein, R., Ferris,
F.L., Bressler, S.B., Milton, R.C., et al.: The age-related eye disease study severity
scale for age-related macular degeneration: Areds report no. 17. Archives of oph-
thalmology (Chicago, Ill.: 1960) 123(11), 1484–1498 (2005)

11. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K.,
Cui, C., Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare.
Nature medicine 25(1), 24–29 (2019)

12. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International journal of computer vision 59(2), 167–181 (2004)

13. Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: A review of deep learning
based methods for medical image multi-organ segmentation. Physica Medica 85,
107–122 (2021)

14. Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N., Freeman, W.T.: Unsuper-
vised semantic segmentation by distilling feature correspondences. In: International
Conference on Learning Representations (2022)

15. Haque, I.R.I., Neubert, J.: Deep learning approaches to biomedical image segmen-
tation. Informatics in Medicine Unlocked 18, 100297 (2020)

16. Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th international
conference on pattern recognition. pp. 2366–2369. IEEE (2010)

17. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-
configuring method for deep learning-based biomedical image segmentation. Nature
methods 18(2), 203–211 (2021)



CUTS for Multigranular Unsupervised Medical Image Segmentation 11

18. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., Van Ginneken, B.:
Multi-atlas-based segmentation with local decision fusion—application to cardiac
and aortic segmentation in ct scans. IEEE transactions on medical imaging 28(7),
1000–1010 (2009)

19. Kim, W., Kanezaki, A., Tanaka, M.: Unsupervised learning of image segmentation
based on differentiable feature clustering. IEEE Transactions on Image Processing
29, 8055–8068 (2020)

20. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 4015–4026 (2023)

21. Kuchroo, M., DiStasio, M., Song, E., Calapkulu, E., Zhang, L., Ige, M., Sheth,
A.H., Majdoubi, A., Menon, M., Tong, A., et al.: Single-cell analysis reveals inflam-
matory interactions driving macular degeneration. Nature Communications 14(1),
2589 (2023)

22. Kuchroo, M., Huang, J., Wong, P., Grenier, J.C., Shung, D., Tong, A., Lucas, C.,
Klein, J., Burkhardt, D.B., Gigante, S., et al.: Multiscale phate identifies multimodal
signatures of covid-19. Nature biotechnology 40(5), 681–691 (2022)

23. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15(1), 654 (2024)

24. Mazurowski, M.A., Dong, H., Gu, H., Yang, J., Konz, N., Zhang, Y.: Segment
anything model for medical image analysis: an experimental study. Medical Image
Analysis p. 102918 (2023)

25. Ott, B.R., Cohen, R.A., Gongvatana, A., Okonkwo, O.C., Johanson, C.E., Stopa,
E.G., Donahue, J.E., Silverberg, G.D., Initiative, A.D.N., et al.: Brain ventricu-
lar volume and cerebrospinal fluid biomarkers of alzheimer’s disease. Journal of
Alzheimer’s disease 20(2), 647–657 (2010)

26. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision
with superpixels: Training few-shot medical image segmentation without annota-
tion. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXIX 16. pp. 762–780. Springer (2020)

27. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

28. Shen, L.L., Sun, M., Ahluwalia, A., Young, B.K., Park, M.M., Toth, C.A., Lad,
E.M., Del Priore, L.V.: Relationship of topographic distribution of geographic at-
rophy to visual acuity in nonexudative age-related macular degeneration. Ophthal-
mology Retina 5(8), 761–774 (2021)

29. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based
on immersion simulations. IEEE Transactions on Pattern Analysis & Machine In-
telligence 13(06), 583–598 (1991)

30. Wang, S., Cao, S., Wei, D., Wang, R., Ma, K., Wang, L., Meng, D., Zheng, Y.:
Lt-net: Label transfer by learning reversible voxel-wise correspondence for one-shot
medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 9162–9171 (2020)

31. Yan, K., Cai, J., Jin, D., Miao, S., Harrison, A.P., Guo, D., Tang, Y., Xiao, J., Lu,
J., Lu, L.: Self-supervised learning of pixel-wise anatomical embeddings in radiolog-
ical images (2020)

32. Zha, H., He, X., Ding, C., Gu, M., Simon, H.: Spectral relaxation for k-means
clustering. Advances in neural information processing systems 14 (2001)


	CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation

