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Abstract. Longitudinal imaging examinations are vital for predicting
pathological complete response (pCR) to neoadjuvant therapy (NAT)
by assessing changes in tumor size and density. However, quite-often
the imaging modalities at different time points during NAT may differ
from patients, hindering comprehensive treatment response estimation
when utilizing multi-modal information. This may result in underesti-
mation or overestimation of disease status. Also, existing longitudinal
image generation models mainly rely on raw-pixel inputs while less ex-
ploring in the integration with practical longitudinal radiology reports,
which can convey valuable temporal content on disease remission or pro-
gression. Further, extracting textual-aligned dynamic information from
longitudinal images poses a challenge. To address these issues, we pro-
pose a longitudinal image-report alignment-guided model for longitudi-
nal mammogram generation using cross-modality radiology reports. We
utilize generated mammograms to compensate for absent mammograms
in our pCR prediction pipeline. Our experimental result achieves com-
parable performance to the theoretical upper bound, therefore providing
a potential 3-month window for therapeutic replacement. The code will
be accessible to the public.

Keywords: pCR prediction · Longitudinal mammogram generation ·
Multi-modal data · Radiology report
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1 Introduction

Neoadjuvant therapy (NAT) has become the common care for breast cancer
patients with the goal of reducing the volume of the tumor and clinical stage,
so that patients have more opportunities for breast preservation and less ex-
tensive surgery [23]. An early prediction of the pathological complete response
(pCR) to NAT may facilitate the tailoring therapy for breast cancer patients,
thus leading to an increased likelihood of achieving pCR [24, 22, 25]. However,
the standard method of evaluating the tumor response to NAT heavily relies
on the post-operative specimens collected at the end of treatment (as shown
in Fig. 1), which leaves little room to adjust the NAT plan. Against this back-
ground, imaging-based technologies (e.g., digital mammography, magnetic res-
onance imaging (MRI)) have become a promising direction for estimating the
patients’ response to NAT [8, 14]. These are non-invasive and therefore flexible
enough for dynamic monitoring. Nonetheless, assessment of treatment response
remains difficult, as the different imaging modalities may result in underestima-
tion or overestimation of disease status [13].

NAT adjustment window 
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Achieve pCR or non-pCR?
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Fig. 1. Clinical background. The general neoadjuvant therapy (NAT) pipeline, typ-
ically commences with the confirmed breast cancer diagnosis through biopsy (stage-I),
followed by the initiation of NAT (stage-II), and the surgical intervention (stage-III).
Throughout this process, I1, I2, and I3 stand for the breast imaging examinations in
each stage to monitor the patient’s response to NAT; R1, R2, and R3 stand for paired
radiology reports.

Recent studies have demonstrated the efficacy of deep learning in predicting
pCR to NAT with breast imaging. Noteworthy, most of these prediction models
only leveraged the single time-point or longitudinal breast MRI scans across NAT
[15, 20], ignoring the incorporation of mammograms. As a complement to MRI,
mammograms can provide reliable distinct pCR indicators regarding changes in
tumor size, density, and calcifications [18, 4]. However, in-NAT mammograms are
often unavailable in clinical practice (cf. stage-II in Fig. 1) to avoid radiation
exposure [23]. It would benefit the precise prediction of pCR through multi-
modal data integration, and minimize the radiation exposure to patients if we
could generate longitudinal (i.e., in-NAT) mammograms with generative models.
Existing longitudinal medical image generation methods [11, 10, 27, 19] mainly
relied on raw-pixel inputs, less exploration in the knowledge provided by longi-
tudinal radiology reports. In contrast, recent efforts [16, 9, 29] on medical visual
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representation learning have shown that radiology reports contain rich semantic
information which may improve image generation tasks. However, deploying the
longitudinal semantic representations from radiology reports to the longitudinal
image generation framework remains a less explored topic. In this work, we pro-
pose a novel multi-modal pCR prediction framework that integrates longitudinal
mammogram generation with cross-modal radiological reports. Leveraging the
advantage of the conditional diffusion generative model over ordinary generative
adversarial network (GAN) framework [3], our model explores the integration of
MRI reports and pre-NAT mammograms to generate in-NAT mammograms for
the patients who missed true in-NAT mammograms from our clinical practice.
Meanwhile, it is constrained by the alignment to longitudinal reports in the la-
tent space to enable reasonable image generation. Moreover, according to the
response monitoring needs in various NAT scenarios, we establish experiments
in each NAT stage, demonstrating the effectiveness of our generated mammo-
grams for early accurate pCR prediction. The experiment at the time point of
stage-III is considered the theoretical upper bound. Our primary contribu-
tions are as follows: (1) We investigate a novel approach for early NAT response
prediction of BC patients by integrating the synthesized absent in-NAT mammo-
grams, facilitating a comprehensive multi-modal analysis. (2) In the generation
process, we introduce longitudinal image-report alignment (LIMRA) methodol-
ogy to guide reasonable longitudinal image generation. (3) By employing the
generated in-NAT mammogram within the pCR prediction pipeline, the model
achieves comparable performance to the upper bound, thus potentially providing
a 3-month therapeutic replacement window.

2 Method

The overall pipeline comprises two main parts. The first part is longitudinal
mammogram generation, depicted in Fig. 2. We propose a report-guided denois-
ing diffusion probabilistic model (RG-DDPM) that learns a conditional score
function of the semantics between paired longitudinal reports; additionally, we
introduce an U-shape image-report alignment model to promote the generation
task. In the second part, we train the pCR prediction model based on multi-
modal inputs from stage-(I, II, III), for quantifying the effectiveness of pCR
prediction enhanced by our generated stage-II (i.e. in-NAT) mammograms.

2.1 Longitudinal Mammogram Generation

RG-DDPM. Our report-guided diffusion-based model (RG−DDPM) follows
the formulation of DDPMs given in [7, 21]. The DDPM is a generative model
that aims to predict the added noise at each step of the diffusion process in order
to generate images. Specifically, given an input image x0, the model adds small
amounts of noise to it in the forward diffusion process to generate a series of noisy
images from x0, . . . , xt, . . . , xT , where 0 < t ≤ T . The amount of noise added at
each step t is determined by the parameter βt, where 0 < βt < 1. The image at
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Fig. 2. Workflow of Longitudinal MG Generation Network: (a) Given longitu-
dinal MRI reports (R1, R2/3, where ’/’ indicates either one), time step t, and the noisy
pre-NAT mammogram Xt, the report-guided diffusion model (RG-DDPM) Dθ esti-
mates the conditional score function (ϵ). The pre-NAT mammogram I1 and ϵ are then
provided to the U-shape generation model Uφ for synthesizing the follow-up mammo-
gram (gI2/3). A longitudinal image-report alignment (LIMRA) scheme is introduced
during the generation process to enable reasonable image generation. (b) Affinity loss
is employed between patient-wise image-report alignment matrices (IMRA). The image
and report features are embedded from the encoder of Uφ and CLIP [17], respectively.
The details of the I1/2/3 and R1/2/3 are provided Fig. 1.

step t is generated as follows: xt =
√
ᾱtx0+

√
1− αtϵ, where αt =

∏t
s=1(1−βs),

ϵ ∼ N (0, I). In reverse diffusion, the model is trained to predict x(t−1) from xt.
With this iterative denoising process, it can generate a fake image x0. Inspired
by this, we employ the strategy of conditional diffusion models [3] to generate
images with desired semantics. It compares the conditions of longitudinal reports
input and delivers semantic information through conditional score function ϵ̂
to the next model. The mean squared error (MSE) loss used for training is
Ld = ∥ϵ − Dθ(xt, t; r1, r2/3)∥22, where Dθ stands for RG-DDPM model, and θ
represents its weight. Textural feature maps (r1 denotes embeddings from R1,
and r2/3 representing embeddings from either R2 or R3) acquired through CLIP
[17].

Longitudinal image-report alignment (LIMRA). Research has demon-
strated that leveraging the representation alignment in the latent space between
text and images improves the scalability of visual representations [30, 6, 5]. In-
spired by this and recognizing the value of longitudinal reports in disease progress
tracking, we introduce the longitudinal image-report alignment (LIMRA) model.
This approach facilitates mammogram generation through two levels. At the fea-
ture level, it encompasses the alignment of latent space representations of the
image and report at each time point. At the image level, it enables the generation
of reasonably deformable mammograms.
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LIMRA and longitudinal affinity learning. In Fig. 2.(b), the visual fea-
ture map (i1, gi2/3) and textual feature map (r1, r2/3) are embedded from the
encoder of Uφ and CLIP [17], respectively. Both have shapes (b, c, w × h) and
(b, c, rnum), where b is the batch size, c is the channel, and w, h represent the
width and height of image features. rnum corresponds to the number of words in
the report. The detailed generation process of obtaining gI2/3 is elaborated in the
subsequent paragraph, focusing on image-level learning. Here, for latent space
alignment at each time point t, we introduce the image-aligned report feature
map Ft. It is defined as Ft = it ⊙ rt, where ⊙ represents element-wise multipli-
cation. Consequently, we measure the image-report alignment matrix (IMRA)
between image-weighted features (i.e., Ft⊙ it) and respective report features us-
ing cosine similarity, defined as: IMRAt = cos(Ft ⊙ it, rt). In this way, IMRA
can capture the relational associations across all regions of the image features
(w × h) to each word (rnum) feature of the report, allowing for more effective
image-report representation learning. Let IMRA1 and IMRA2 represent the
pre-NAT and follow-up image-report alignment matrices, respectively. Ideally,
for the same patient within a batch, their IMRA matrices between two time
points (i.e., IMRA1 and IMRA2) should be in affinity to each other for intra-
patient agreement compared to different patients. Within a batch of N cases, we
denote the affinity loss as La = 1

N

∑N
n=1 ∥(IMRAn

1 − IMRAn
2 )∥22.

Furthermore, regarding image-level learning, to ensure that the generated
mammogram has similar tissue structure to the pre-NAT mammogram, mean-
while enabling deformation for progressive changes, we employ the decoder (Dφ)
of Uφ to generate the deformed image according to the semantic information pro-
vided by ϵ̂ and pre-NAT mammogram. Precisely, the longitudinal mammogram
is generated by warping the input I1 with a predicated deformation field from
Dφ for the alignment purpose. We use MSE loss (Lr) to encourage a reasonably
deformable generation of the target mammogram. The ground truth of the tar-
get mammogram includes real-world images I2 and I3 in the generation task,
with details provided in supplementary S.Tab.1. By minimizing the combined
above three loss functions (Lsum = Ld + La + Lr) during the generation train-
ing process, the model can effectively learn to generate high-quality longitudinal
mammogram images that capture the multi-level tissue progress over time.

2.2 Longitudinal pCR prediction.

In this phase, our goal is to evaluate the performance and time-effectiveness of
pCR prediction by using our generated in-NAT mammogram of stage-II. Mean-
while, we leverage a number of pCR prediction experiments by using multi-modal
information obtained from different therapy stages as comparing baselines. We
employ the same settings in all experiments, with a binary classifier and late
fusion strategy that combines various features, including image features from
longitudinal mammograms, textual features output from CLIP by paired MRI
reports, and clinical information features (more details are provided in Sec. 3.1).
The clinical features were encoded from a linear layer followed by the Exponen-
tial Linear Unit (ELU) activation function. The binary cross-entropy between
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the target attributes and the predicted attribute probability vector is used as
the classification loss.

3 Experiments

3.1 Dataset and Metric

We deploy our model on the in-house dataset comprising 4,456 longitudinal
mammogram exams (including bilateral multi-view mammograms) from 434 pa-
tients, along with paired radiology reports from MRI and clinical information,
including pre-NAT T, N, M stage and molecular subtype. The dataset details
are provided in S.Tab.1. Data were split 75%/10%/15% at the patient level for
training, validation and test, respectively. Note that the reports analyzed in our
study were derived from paired MRI, considering that in-NAT mammogram and
paired report are usually unavailable for inference.

In our longitudinal image generation experiment, we utilize the learned per-
ceptual image patch similarity (LPIPS) metric [28] to measure the quality of the
generated images. This metric is specifically suitable for our study as it focuses
on assessing perceptual similarity while reflecting semantic differences between
the generated mammograms and real images across multiple latent spaces. More-
over, it avoids the potential impact of non-mammogram related changes (e.g.,
variations by patient positioning), which makes peak signal noise rate (PSNR)
and structural similarity index measure (SSIM) inappropriate. For pCR predic-
tion, we report the sensitivity, specificity, positive and negative predictive values
(PPV, NPV), and area under the receiver operating curve (AUC), accompa-
nied 95% confidence intervals, using the bootstrapping method [2](N = 1000
replicates).

3.2 Implementations

During the training of image generation, we adopt the architecture and hyper-
parameters of the diffusion model from the DDPM [7]. For our LIMRA model,
we employ a U-shape network with the backbone of VoxelMorph [1]. The gen-
eration model was trained for 80,000 iterations with a batch size of 2 on Nvidia
A6000 48GB GPU, which took approximately 180 hours. For the pCR predic-
tion classifier, we choose the ResNet-50 architecture as the backbone. The Adam
optimizer is employed with an initial learning rate of 10−4 and a weight decay
of 10−6. The maximum number of epochs and batch size were set to 200 and 8.

3.3 Comparisons and statistical analysis

Results on In-NAT mammogram synthesis. In Fig.3 (left), we present
qualitative comparisons of the generated mammograms. Our results indicate
that our model can effectively capture the distinct breast morphological charac-
teristics changes between non-pCR and pCR cases. Specifically, for pCR case 1
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Fig. 3. Visualization and quantification of longitudinal mammogram gener-
ation. Left: mammogram examples of pCR (case 1, 2: top two rows) and non-pCR
patients (case 3: the third row), with a red box indicating the tumor location. Right:
the violin plots of learned perceptual image patch similarity (LPIPS) distribution. For
detailed statistical improvements (*,**,***) are provided in Tab.2.

and case 2, our model generates shrink mammograms, while for non-pCR case
3, the model generates a micro-altered mammogram, which is consistent with
the clinical reality. Furthermore, we compare ”Ours(Inverse-Report)” with the
initial output, where the input involves replacing the original report with its op-
posite meaning. For instance, for case 2, when replacing the original pCR-related
keyword ”remission” with ”residual”, the output of Ours(Inverse-Report) shows
more density in the tumor region, while the original output shows a shrinking
tumor. This demonstrates our model can understand different semantic inputs
from reports and generate semantically compliant mammograms. In contrast,
the two baselines of Diffusion-based [10] and VAE-based [19] models, cannot
generate different semantic mammogram outputs, and the input and output
mammograms showed no obvious visual difference. This may be because their
models are designed for generating specific patterns, such as next-frame recon-
struction [10] and brain chronological aging [19], but the change of longitudinal
mammogram during therapy is uncertain, making it less applicable. Then, we
perform quantitative comparisons by calculating LPIPS between the target and
the synthesized mammogram. The distribution plot in Fig.3 demonstrates that
our approach yields more similar semantics between real and generated mam-
mograms, with a larger number of points clustering towards the lower end. Sta-
tistical analysis shows the proposed method achieves significant improvements
(Tab.2) on LPIPS over diffusion-based (p <0.05) and VAE-based (p <0.01) meth-
ods. Moreover, t-SNE [12] plots (S.Fig.1) show that our generated mammogram
representations more closely match real mammogram representations in latent
space.

Evaluation of the time-effectiveness to pCR prediction performance
enhanced by our generated stage-II mammogram. We conducted exper-
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Table 1. Results for pCR prediction, utilizing different therapy stage information.
Each P -value is calculated on AUC by comparing it with the upper bound (the last
column). Note that the experiment comparing the generated in-NAT MG (gI2) with
real-world MG is shown in S.Tab.2.

Scenarios Pre-NAT evaluation In-NAT evaluation
Post-NAT evaluation

(before surgery)

Modalities I1+C I1+R1+C I1+R1+R2+C I1+R1+R2+C+gI2 I1+R1+I3+R3+C

Sensitivity
0.546 0.587 0.673 0.674 0.795

[0.469,0.627] [0.505,0.663] [0.605,0.752] [0.607,0.752] [0.691,0.848]

Specificity
0.600 0.686 0.672 0.767 0.719

[0.507,0.656] [0.584,0.739] [0.576,0.725] [0.654,0.802] [0.615,0.769]

PPV
0.474 0.569 0.571 0.658 0.676

[0.420,0.562] [0.515,0.653] [0.527,0.663] [0.605,0.741] [0.628,0.763]

NPV
0.671 0.675 0.736 0.756 0.827

[0.591,0.746] [0.597,0.742] [0.658,0.807] [0.671,0.829] [0.747,0.898]

AUC
0.567 0.609 0.669 0.710 0.765

[0.501,0.649] [0.532,0.683] [0.601,0.741] [0.649,0.781] [0.704,0.834]

P -value 1.406e-4 6.551e-4 3.204e-2 0.185 −
The details of the I1/2/3, R1/2/3 and C are provided in Fig. 1.

Table 2. For pCR prediction performance of comparing methods by integrating their
generated in-NAT mammogram with the information in the fifth column of Tab. 1.
Each P -value is calculated on LPIPS between ours and compared method.

Methods Sensitivity Specificity PPV NPV AUC LPIPS↓ P -value

Diffusion-based 0.621 0.756 0.646 0.726 0.672 0.604
1.378e-4

model [10] [0.552,0.702] [0.649,0.794] [0.583,0.736] [0.644,0.793] [0.594,0.744] ±0.069
VAE-based 0.563 0.748 0.610 0.690 0.671 0.615

3.150e-14
model [19] [0.498,0.643] [0.638,0.785] [0.564,0.715] [0.617,0.760] [0.593,0.749] ±0.041

w/o RG-DDPM
0.632 0.681 0.587 0.711 0.692 0.598

4.125e-2
[0.563,0.715] [0.598,0.742] [0.533,0.686] [0.632,0.788] [0.619,0.761] ±0.040

w/o LIMRA
0.598 0.714 0.595 0.697 0.681 0.599

1.753e-2
[0.539,0.689] [0.613,0.761] [0.548,0.696] [0.616,0.761] [0.606,0.747] ±0.037

Ours
0.674 0.767 0.658 0.756 0.710 0.589 −

[0.607,0.752] [0.654,0.802] [0.605,0.741] [0.671,0.829] [0.649,0.781] ±0.039

iments to predict pCR at the patient level using inputs from different therapy
stages, as defined in Fig. 1. Multi-view mammograms were utilized and com-
bined to form a comprehensive imaging representation for each patient [26, 5].
Tab.1 demonstrates that incorporating reports enhances pCR prediction AUC
by approximately 4% than single-modal input, while incorporating longitudinal
imaging improves AUC by around 11%. Further, our generated in-NAT mammo-
gram (gI2), besides eliminating the statistical difference between stage-II and
the upper bound of stage-III (reducing the difference from 3.204e-2 to 0.185),
achieves the best pCR prediction performance among the generation models
(Tab.2). This implies that our model could potentially allow a 3-month window
for therapeutic replacement for predicted non-pCR patients with a specificity of
76.8%. Moreover, S.Tab.2 provides a comparison of pCR prediction results in
sub-populations using real-world in-NAT mammograms.

Ablations. In this section, we conduct an ablation study to analyze the impact
of the RG-DDPM model and LIMRA model on our model’s performance. Evi-
dently, as depicted in Fig.3 (right) and Tab. 2, the w/o LIMRA model performs
poorly compared to the w/o RG-DDPM model. This is not surprising since the
diffusion-only (RG-DDPM) model is not specifically designed for longitudinal
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image generation and is unable to capture semantic changes over time. However,
despite lacking the LIMRA model, it is still guided by reports as conditions dur-
ing training, thereby enabling our RG-DDPM-only model to exhibit competitive
performance to that of the diffusion-based model as well as VAE-based model.

4 Conclusion

In this paper, we propose the longitudinal image-report alignment (LIMRA)
for guiding longitudinal mammogram generation from cross-modal radiological
reports. Additionally, we establish a novel approach for early NAT response pre-
diction of BC patients by incorporating generated absent mammograms within
the framework of longitudinal multi-modal modeling. Importantly, utilizing our
generated in-NAT mammogram achieves comparable performance to the upper
bound, thus providing a potential 3-month window for therapeutic replacement.
Future work could integrate longitudinal mammogram generation with other
breast imaging modalities, such as MRI and ultrasound, to facilitate multi-modal
learning in pCR prediction and other clinical downstream tasks.
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