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Abstract. We propose SpeChrOmics, a characterization framework for generat-
ing potential biomarkers of pathologies from hyperspectral images of body tissue. 
We test our model using a novel clinical application – hyperspectral imaging for 
the diagnosis of latent tuberculosis infection (LTBI). This is a neglected disease 
state predominantly prevalent in sub-Saharan Africa. Our model identified water, 
deoxyhemoglobin, and pheomelanin as potential chromophore biomarkers for 
LTBI with mean cross validation accuracy of 96%. Our framework can poten-
tially be used for pathology characterization in other medical applications. 

Keywords: Medical hyperspectral imaging, latent tuberculosis infection, bi-
omarker characterization, tuberculin skin test indurations, chromophores. 

1 Introduction 

Medical optical imaging (MOI) involves use of the visible and near infrared (VNIR) 
range (380 to 2500 nm) of the electromagnetic spectrum to capture images of body 
tissue [1]. Red-Green-Blue (RGB) imaging and hyperspectral imaging (HSI) are two 
of the main sub modalities of MOI [2]. A medical hyperspectral (HS) image (also called 
a hypercube) is composed of two-dimensional (2D) spatial axes, and a spectral axis, 
with the imaging system capturing the spectrum of VNIR light reflected by body tissue 
and organizing it along the spectral axis [3]. Conversely, an RGB image possesses three 
channels of three broad color bands in place of a spectral axis. The spectral axis of HSI 
enables it to facilitate a richer characterization of body tissue than RGB images [4]. 
Chromophores are molecules found in body tissue and other substances which absorb 
and reflect selected wavelengths of light. They are responsible for the color appearance 
of body tissue [5]. Currently, the main method for estimating the concentration of chro-
mophores in a sample of body tissue, as a means of pathology characterization in vivo 
or in vitro, is spectral unmixing using the modified Beer-Lambert model [6, 7]. This 
method facilitates the generation of 2D chromophore maps that can be used to 
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characterize body tissue.  Most medical hyperspectral imaging (HSI) studies focus on 
either qualitative analysis, where they visually interpret chromophore maps, or on quan-
titative analysis that does not take into account the spatial distribution of these chromo-
phores, to identify and characterize different pathologies. While effective for clinical 
applications where differences in disease states can easily be visualized in the chromo-
phore maps, current methods may fall short in cases where these delineations are not 
immediately obvious to a human observer from the maps. Consequently, there is a need 
for an advanced framework that integrates robust spatial feature extraction with existing 
spectral feature extraction techniques. Such a framework would enhance the character-
ization of chromophore maps, particularly in clinical scenarios where a purely qualita-
tive approach falls short. Combining radiomics, a technique for extracting spatial fea-
tures from radiological images [8], with spectral unmixing could enhance the extraction 
of robust features that capture both chromophore information and tissue spatial details. 
While existing studies have yet to demonstrate this combination, our study introduces 
'SpeChrOmics,' a novel framework that merges spectral unmixing with radiomics. It 
incorporates cross-validation and a classification mechanism to selectively identify fea-
tures that most effectively characterize imaged pathologies. 

Latent tuberculosis infection (LTBI) is a neglected disease state which is predomi-
nantly prevalent in sub-Saharan Africa and parts of south-east Asia [9]. The diagnosis 
of LTBI through the tuberculin skin test (TST) represents a clinical challenge, as it 
cannot be easily characterized using traditional qualitative analysis of optical images. 
[10-12]. This is due to the presence of erythema at the site of the test regardless of the 
LTBI status of the subject [13]. The TST is the most common test for LTBI in low- and 
middle- income countries (LMICs) [14]. TST is administered by injecting the tubercu-
lin antigen into the dermis of a subject. An induration (lump) may form at the site of 
the injection 48-72 hours after the injection [14]. Diagnosis of LTBI is clinically ob-
tained by comparing the manually measured diameter of an induration with consensus 
thresholds [15]. The Mantoux reading technique (manual pen and ruler measurement) 
currently used by clinicians is subjective as it is dependent on the reading technique of 
the clinician [16]. This introduces the need for a modality that addresses the subjectivity 
of TST indurations. Research by [10, 11] explored the possibility of using RGB imag-
ing and 3D reconstruction to mitigate the subjectivity associated with Mantoux TST 
readings. The approach struggled with real TST indurations [12] as the subtle indura-
tions lying beneath the skin surface were challenging to detect. Given its rich feature 
detection and subdermal imaging capabilities (up to a depth of 5 mm in skin), HSI 
emerges as a promising solution to reduce the subjectivity associated with TST inter-
pretations. The interferon-gamma release assay (IGRA) is a more costly in vitro blood 
test for LTBI compared to TST [17], utilizing ESAT-6, CFP-10, and TB 7.7 antigens—
components also found in tuberculin [18]. Theoretically, IGRA-related reactions could 
coincide with TST's induration-forming reactions at the injection site. Therefore, em-
ploying spectral unmixing to estimate chromophores in HS imaging could help distin-
guish between chromophores indicative of IGRA and those predictive of TST within 
the induration site. This positions HSI as a modality capable of bridging the diagnostic 
gap between TST and IGRA, which do not always yield concordant LTBI results for 
some subjects, as indicated in [19]. 
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This study offers two significant contributions. First, we introduce a novel charac-
terization framework for medical HSI, 'SpeChrOmics,' which merges spectral and spa-
tial feature extraction techniques to generate validated, robust features. These features 
have the potential to serve as biomarkers, offering more precise discrimination between 
tissue sample disease states than traditional qualitative analysis. Second, we present a 
novel clinical application of HSI: the diagnosis of LTBI. This application serves as a 
practical use case to demonstrate the efficacy of the SpeChrOmics framework. 

2 Methodology 

A schematic of SpeChrOmics, as shown in figure 1, is composed of three blocks – 
spectral feature extraction, spatial feature extraction, and feature selection & ranking. 
The input data to SpeChrOmics is the reflectance hypercube 𝐻 (𝑥, 𝑦, 𝜆) captured from 
tissue sample 𝑖. The output data of our model is a set of ranked features 𝐹  which 
could serve as biomarkers to characterize all the tissue samples 𝑖 = 1, 2, … , 𝑛 based on 
the common pathology across the samples. The reflectance hypercube is composed of 
spatial axes 𝑥, 𝑦, and spectral axis 𝜆 which is defined in terms of the wavelength of light 
(in nm) reflected by a tissue sample. Adhering to the Beer-Lambert model, which un-
derpins the spectral unmixing function  ℒ, each sample's reflectance hypercube is con-
verted into an absorbance hypercube 𝐻 (𝑥, 𝑦, 𝜆) [20] by taking the natural logarithm of 
its reciprocal. The spectral axis of 𝐻 (𝑥, 𝑦, 𝜆) describes the spectra of light absorbed 
across wavelengths of light by each pixel area of the sample. The goal of the spectral 
feature extraction block of our approach is to transform the continuous wavelength 
spectral axis of a hypercube to a discrete axis of chromophore maps based on the inher-
ent molecular composition of captured tissue. This assumes that chromophore-based 
features are more indicative of specific pathologies than wavelength-based features, 
thereby offering superior diagnostic value.  

A 𝑞-channel array of normalized chromophore maps 𝐶 = [𝐶 , 𝐶 , … , 𝐶 ] , for sam-
ple 𝑖, can be estimated from an absorbance hypercube using the Beer-Lambert model. 
We consider the Beer-Lambert model as a non-linear regression function 𝑔 which esti-
mates the relationship between independent spatial and spectral variables x, y and 𝜆, 
and the chromophore map dependent variables 𝐶 = [𝐶 , 𝐶 ] = [𝐶 , 𝐶 , … , 𝐶 , 𝐶 ], as 
shown in equation 1. Here, 𝐶  is a 2D map of residual chromophores (which are distinct 
from those estimated in 𝐶 ) and unmodelled determinants of 𝐻 (𝑥, 𝑦, 𝜆) . The number 
of chromophores, 𝑞, to be estimated from a sample is based on a priori knowledge of 
the chromophore composition of the sample. The chromophores can be preselected 
from a library of standard chromophores. The Beer-Lambert model can be considered 
as a sum of the products of the extinction coefficient 𝜀 = [𝜀 , 𝜀 , … , 𝜀 ] and correspond-
ing apparent estimated chromophore map 𝐶  for each of the considered 𝑞 chromophores 
[21], as shown in equation 2. The extinction coefficient of a chromophore is a unique 
constant measure per chromophore that defines the absorptivity of the chromophore at 
a given wavelength [7]. The non-linear regression function 𝑔 also includes 𝐶  as an 
additive element. The spectral unmixing function ℒ transforms the per sample absorb-
ance hypercube to a 𝜑-channel array of normalized chromophore maps 𝐶 (𝑥, 𝑦) which 
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is composed of the estimated chromophore maps 𝐶  and the residual chromophore map 
𝐶 . As shown in equation 3, we define the spectral unmixing function as a function that 
estimates the 𝜑-channel chromophore map array that minimizes the squared error be-
tween the measured absorbance hypercube 𝐻 (𝑥, 𝑦, 𝜆) and a modelled absorbance hy-
percube 𝐻 (𝑥, 𝑦, 𝜆) generated by the Beer-Lambert model. Concatenating the chro-
mophore map arrays, with 𝜑 channels, for 𝑛 samples, along the discrete 𝜑 axis, results 
in 𝐼. This serves as the 𝜑-channel chromophore composite of all samples. This com-
pletes the spectral feature extraction block of SpeChrOmics. The spectral feature ex-
traction block of our model also performs the task of dimensionality reduction, as 𝜑 <
𝜆 where the number of wavelength bands 𝜆 in a hypercube can be in the hundreds and 
the number of chromophore channels 𝜑 is typically less than 10. It is assumed that 𝐼 
encapsulates the most pertinent information from the original spectral axis across all 
samples. 

 
Fig. 1. A schematic of SpeChrOmics 

𝐻 (𝑥, 𝑦, 𝜆) = 𝑔 𝑥, 𝑦, 𝜆, 𝐶 + 𝐶   (1) 

𝐻 (𝑥, 𝑦, 𝜆) = 𝜀 (𝜆) ∙ 𝐶 (𝑥, 𝑦) + 𝜀 (𝜆) ∙ 𝐶 (𝑥, 𝑦) + ⋯ + 𝜀 (𝜆) ∙ 𝐶 (𝑥, 𝑦) + 𝐶 (𝑥, 𝑦) (2) 

ℒ 𝐻 (𝑥, 𝑦, 𝜆) = arg min 𝐻 (𝑥, 𝑦, 𝜆) − 𝐻 (𝑥, 𝑦, 𝜆)  (3) 

The output 𝐼 of the spectral feature extraction block feeds into the spatial feature 
extraction block of SpeChrOmics which has two sub blocks – the deterministic radi-
omics and deep radiomics spatial feature extraction blocks. The deterministic radiomics 
branch involves the application of a set of 𝛼 radiomic models 𝑀 =
[𝑀 , 𝑀 , … , 𝑀 ] from the work of [22] on the chromophore array 𝐼 of all samples.  

This process yields a set of deterministic radiomics features, 𝐷  comprising attrib-
utes that encapsulate the spatial relationships among the chromophore pixels within 
each sample, as delineated in Equation 4. A constituent feature 𝐹 ,

,  is defined as 

the output of applying radiomic model 𝑀  on the first chromophore map in 𝐶 ,the 
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chromophore array of sample 𝑖. In the deep radiomics branch of SpeChrOmics, the 
chromophore map for each chromophore array 𝐶  corresponding to each sample in 𝐼 is 
inputted into a pretrained deep learning model. Each of the 𝛽 nodes in the penultimate 
layer, immediately preceding the classifier layer of a pretrained model, can be repre-
sented as a set of 𝛽 models 𝑀 = [𝑀 , 𝑀 , … , 𝑀 ] applied to each chro-

mophore map in 𝐼 to produce a set of deep radiomics features 𝐷 , as shown in equa-
tion 5. In SpeChrOmics the deterministic and deep radiomics branches converge such 
that  𝐷  is the selector between 𝐷  and 𝐷 . With this approach, our framework 
offers the option of two kinds of spatial features from chromophore maps. The spatial 
pixel relationships captured by the extracted features in  𝐷  are more explainable than 
the extracted features in 𝐷 . On the other hand, the robustness of the feature extrac-
tion process of deep learning models suggests that the features in 𝐷  could better 
capture the spatial relationships in chromophore maps than the features in 𝐷 . 

𝐷 = 𝐹 ,
, = 𝑀 (𝐼), 𝑀 (𝐼), … , 𝑀 (𝐼) = [𝐹 ,

, , 𝐹 ,
, , … , 𝐹 ,

, ] (4) 

  

𝐷 = 𝐹 ,
,

= 𝑀 (𝐼), 𝑀 (𝐼), … , 𝑀 (𝐼) = 𝐹 ,
,

, 𝐹 ,
,

, … , 𝐹 ,
,

         (5) 

𝐹 = (𝑓 , 𝑆 |𝑆 = 𝐶𝑉(𝑆𝑉𝑀(𝑓 , 𝑦), 𝑘); 𝑆 > 𝜏, 𝑓 𝜖𝐹 ,
, ) (6) 

The array 𝐷  of extracted spatial features is fed to the feature selection & ranking 
block which utilizes nested 𝑘-fold cross validation and a support vector machine (SVM) 
classifier (for its soft margin ability to classify samples near a decision boundary) to 
produce a set of features (potential biomarkers) ranked based on mean validation and 
test scoring metrics 𝑆 ,  and 𝑆 , . Here, 𝑦 is the set of target class labels 
per sample and 𝐹  in equation 6 is a sorted set of candidate features and metric scores. 

We generated a novel in-house HSI dataset of the TST indurations site for 37 human 
subjects of African descent. The Specim IQ HSI camera [23] and a broadband LED 
were used to acquire the 37 hypercubes. We generated an estimated RGB image from 
each hypercube by selecting the 750 nm, 560 nm, and 410 nm band images of each 
hypercube as the red, green, and blue channel images, respectively. These choices of 
wavelengths were empirically determined by Specim [23] and are an attempt to mimic 
the peak wavelengths of the color filters used in RGB cameras [24]. The Specim IQ 
possesses an RGB viewfinder camera, next to the HSI sensor, that captures RGB im-
ages of a scene concurrently with captured hypercubes. This results in a sample size of 
37 hypercubes, estimated RGB images, and camera based RGB images of the TST skin 
tissue area of 37 subjects. Each hypercube, estimated RGB image, and camera based 
RGB image has a spatial dimension of 200 x 200 pixels around the TST injection site 
per subject. The hypercubes have a spectral dimension of 204 wavelength bands from 
397 nm to 1003 nm.  

Two sets of binary class labels 𝑦  and 𝑦 , based on clinically measured Man-
toux TST and IGRA readings, respectively, for the 37 subjects, were utilized in the 
analysis and classification of the dataset in this study. Ten samples were TST positive 
based on clinically measured TST induration size > 10 𝑚𝑚. Consequently, 27 samples 
were TST negative leading to a class imbalance in the dataset. Nine of the subjects were 
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IGRA positive and 28 were IGRA negative which also resulted in class imbalance. 
Thus, balanced accuracy was the metric of choice in this study to evaluate and rank 
candidate features. There was a 46% agreement between the TST and IGRA based 
LTBI diagnosis of the subjects. The tissue chromophores estimated in this study were 
oxyhemoglobin (OX), deoxyhemoglobin (DX), eumelanin (EM), pheomelanin (PM), 
bilirubin (BL), water (WT), and fat (FT). These are the most significant chromophores 
in the dermis region of the human skin [4], which is where a TST is administered. The 
extinction coefficients for these seven chromophores were obtained from [25, 26]. We 
applied our dataset of 37 hypercubes, estimated RGB images, and camera based RGB 
induration images to SpeChrOmics to generate potential TST and IGRA based bi-
omarkers. The goal of this was to analyze the differences in efficacy of HSI and RGB 
imaging in the characterization LTBI using our proposed approach as the evaluation 
platform. The estimated and camera based RGB images were fed to only the spatial 
feature extraction and the feature selection & ranking blocks of SpeChrOmics as 3-
channel versions of 𝐶 . Three deep learning models ResNet50, DenseNet121, and In-
ceptionV3, which had been pretrained on the RadImageNet [27] dataset of 1.35 million 
medical images across several radiological modalities, was each used in this study to 
generate the deep radiomics features 𝐷 . Hyperspectral images are currently not in-
cluded in RadImageNet nor any other public medical imaging dataset repository. The 
choice of these three pre-trained models assumes that these models have learned spatial 
features from other medical imaging modalities that could help them generate spatial 
features from the chromophore maps of TST indurations that accurately characterize 
the indurations. 

3 Results 

The camera based RGB images, estimated RGB images, estimated chromophore 
maps 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 , and map of residuals 𝐶  for some of the 
subjects are as shown in figure 2. For the hypercubes, the wavelength range of 450 – 
1003 nm was utilized, rather than the full 397 – 1003 nm range, during the spectral 
unmixing stage as this was the widest wavelength range which minimized the regres-
sion error. This is due to the contrast between high peaks in the extinction coefficients 
of OX and DX from 397 – 450 nm, and the relatively low reflectance of the human skin 
in that range. The best ranked feature combinations and their scoring metrics after ap-
plying the 37 hypercubes, camera based RGB images, and estimated RGB images of 
indurations are as shown in table 1. These features are the potential optical imaging-
based biomarkers for TST and IGRA from in vivo induration samples. The best ranked 
deterministic radiomics features natively possess explainability unlike deep radiomics 
features. The visualization of the deterministic radiomics features that best characterize 
TST indurations based on SpeChrOmics are as shown in figure 3. The skewness of WT 
and PM were the best features from 𝑫𝒅𝒆𝒕 and their skewness contribution maps were 
generated. 
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Fig. 2. Camera-based RGB images, estimated RGB images (RGB*), and chromophore maps of 
selected subjects with the corresponding true TST and IGRA classes. 

Table 1. The scoring performance of the best features. Where BSF: best single feature, BFC: 
best feature combination, (MV, MT): mean cross validation, mean test balanced accuracy, (RCB, 
GCB, BCB): red, green, blue channel-based features, and (WTB, DXB, PMB, EMB, RSB): fea-
tures based on WT, DX, PM, EM, and RES chromophores 

  𝐃𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐢𝐬𝐭𝐢𝐜 𝐑𝐚𝐝𝐢𝐨𝐦𝐢𝐜𝐬 ResNet50 InceptionV3 DenseNet121 
Target label, 𝒚 TST IGRA TST IGRA TST IGRA TST IGRA 

R
G

B
 BSF RCB RCB RCB GCB RCB RCB RCB RCB 

BSF (MV, MT) 67%, 77% 75%, 70% 65%, 73% 44%, 45% 77%, 83% 49%, 60% 90%, 91% 71%, 68% 
BFC GCB, BCB RCB, GCB GCB, BCB RCB, RCB RCB, GCB RCB, BCB RCB, GCB GCB, GCB 

BFC (MV, MT) 65%, 65% 78%, 68% 82%, 86% 91%, 90% 87%, 91% 75%, 60% 94%, 91% 79%, 68% 

E
-

R
G

B
 BSF RCB RCB RCB RCB GCB RCB RCB BCB 

BSF (MV, MT) 67%, 74% 73%, 82% 70%, 70% 59%, 64% 77%, 78% 72%, 83% 78%, 81% 82%, 83% 
BFC RCB, GCB RCB, RCB RCB, RCB RCB, RCB RCB, GCB RCB, GCB RCB, BCB GCB, GCB 

BFC (MV, MT) 67%, 83% 75%, 58% 79%, 84% 89%, 95% 88%, 93% 88%, 98% 96%, 95% 94%, 97% 

H
SI

  

BSF WTB PMB WTB PMB WTB PMB DXB DXB 
BSF (MV, MT) 71%, 81% 73%, 85% 82%, 80% 51%, 74% 79%, 81% 69%, 75% 82%, 83% 87%, 88% 

BFC WTB, RSB PMB, EMB WTB, PMB WTB, PMB WTB, PMB WTB, DXB WTB, DXB DXB, BLB 
BFC (MV, MT) 80%, 80% 76%, 83% 85%, 90% 78%, 78% 92%, 94% 83%, 87% 96%, 100% 86%, 100% 

    
Fig. 3. Visualization of the best deterministic features for the TST and IGRA classes 

4 Discussion 

The camera based and estimated RGB images in figure 2 show that erythema is present 
at the site of the TST regardless of the resulting TST and IGRA diagnosis. The presence 
of erythema poses a challenge to visual TST readings which necessitated the use of 
tactual exploration by clinicians. The aim of SpeChrOmics in this study’s novel clinical 
application is to extract subdermal features from TST indurations, that are typically 
only accessible through tactual exploration, for the Mantoux reading, and in vitro test, 
for the IGRA reading. Visually, the OX chromophore shows the highest contrast among 
the chromophores, likely due to the erythema. None of the chromophores exhibit visu-
ally observable features that easily discriminate between positive and negative TST or 
IGRA labels. This justifies the use of the spatial feature extraction block of SpeChrOm-
ics for this clinical application. The performance of SpeChrOmics on the TST indura-
tion dataset is summarized in table 1, where BSF = best single feature, BFC = best 



8  A. S. Oladokun et al. 

feature combination, MV = mean cross validation balanced accuracy, MT = mean test 
balanced accuracy, (RCB, GCB, BCB) = red, green, blue channel-based features re-
spectively, and (WTB, DXB, PMB, EMB, RSB) = features based on WT, DX, PM, 
EM, and RES chromophores. The deep radiomics features generated better classifica-
tion accuracies for all three groups of images than the deterministic radiomic features. 

This suggests that deep learning models are more adept at extracting spatial features 
from TST indurations. The estimated RGB induration images (E-RGB) generated 
higher mean balanced accuracies across all deterministic and deep models than the cam-
era based RGB induration images. This could be due to the demosaicking effect caused 
by the color filter array on the sensors of typical RGB cameras [24]. Due to demosa-
icking, some pixels may not display their true color, potentially affecting the accuracy 
of spatial feature extraction. Since HS cameras capture the true spectra of each pixel, 
every pixel in E-RGB contains true color information. The BFCs performed better than 
the BSFs across the dataset and models. The RCBs were the best performing group of 
features across all tests done on the RGB camera-based images and E-RGBs. This sug-
gests that, of the three color-channel bands, the red color channel of an RGB image 
characterizes TST indurations the most. The order of performance of the selected deep 
learning models, in increasing order for both TST and IGRA labels, across all image 
types, is ResNet50, InceptionV3, and DenseNet121 [27]. This suggests that the Dense-
Net architecture, with a 96% MV, is adept at extracting LTBI-related features from 
optical images of TST indurations.  

For the hypercube dataset, water-based features (skewness of WT for 𝑫𝒅𝒆𝒕) seem to 
be most prominent among other chromophore features. Also, PM and DX based fea-
tures (skewness of PM for 𝑫𝒅𝒆𝒕) seem to contribute to the characterization TST indu-
rations. The DX based features seem to be best at predicting IGRA diagnosis from TST 
indurations though IGRA tests are in vitro and involve a more specific reagent than the 
TST. The table columns indicate that water-based chromophores yield the best results 
for HS images, whereas features from the red color band are most effective for RGB 
images. This could be because the wavelength of peak absorption of water is closer to 
the red color band than other bands [4]. This appears to also be the case with DX and 
GCB as DX has a peak absorption wavelength in the green color band [28]. The deep 
radiomics features extracted from the E-RGBs outperformed the ones from the hyper-
cubes for the IGRA classification and vice versa for the TST. This suggests that only a 
few wavelength bands could be required to predict IGRA diagnosis from TST indura-
tions. The chromophore biomarkers WT, DX, and PM identified by SpeChrOmics for 
LTBI from the images of TST indurations suggests that less expensive HS cameras, 
which only capture at the peak wavelengths of these chromophores, can be used for this 
clinical application. Cytokines released by macrophages during the formation of TST 
indurations could promote localized vasodilation and vascular permeability [29] which 
may explain the accumulation of water and hemoglobin at the induration site. Also, the 
cytokines at induration site can activate local melanocytes [30] which could cause them 
to produce more melanin at the site. The limitations of this study include a small dataset 
size, the absence of an established evaluation framework, and the lack of a baseline 
comparison. These limitations stem from the neglected nature of LTBI as a disease 
condition and the under-representation of research in HSI-based biomarker 
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identification. This paper serves as a good starting point for further research in this 
field, and serves as a foundation for future validation of SpeChrOmics on larger and 
more diverse datasets. 

5 Conclusion 

This study presents a novel framework, SpeChrOmics, for extracting biomarkers from 
the hyperspectral images of body tissue with pathology. The framework was evaluated 
using a novel clinical application of HSI for LTBI, which is a neglected disease condi-
tion. Chromophore-based biomarkers were generated for aiding the diagnosis of LTBI 
in the TST and IGRA methods. The resulting features, with up to 96% validation accu-
racy, offer new quantitative image-based readings for TST and IGRA that are precise 
and repeatable. A limitation of this study is its small dataset size, which will be ad-
dressed in the next phase of the study. SpeChrOmics may potentially be used to char-
acterize pathologies in other medical HSI applications such as skin cancer [31], endos-
copy [3], cervical cancer [32], and wound treatment [33].  
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