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Abstract. Modern neuroimaging technologies set the stage for studying
structural connectivity (SC) and functional connectivity (FC) in-vivo.
Due to distinct biological wiring underpinnings in SC and FC, however,
it is challenging to understand their coupling mechanism using statistical
association approaches. We seek to answer this challenging neuroscience
question through the lens of a novel perspective rooted in network topol-
ogy. Specifically, our assumption is that each FC instance is either locally
supported by the direct link of SC or collaboratively sustained by a group
of alternative SC pathways which form a topological notion of detour.
In this regard, we propose a new connectomic representation, coined
detour connectivity (DC), to characterize the complex relationship be-
tween SC and FC by presenting direct FC with the weighted connectiv-
ity strength along in-directed SC routes. Furthermore, we present SC-FC
Detour Network (SFDN), a graph neural network that integrates DC em-
bedding through a self-attention mechanism, to optimize detour to the
extent that the coupling of SC and FC is closely aligned with the evolu-
tion of cognitive states. We have applied the concept of DC in network
community detection while the clinical value of our SFDN is evaluated
in cognitive task recognition and early diagnosis of Alzheimer’s disease.
After benchmarking on three public datasets under various brain par-
cellations, our detour-based computational approach shows significant
improvement over current state-of-the-art counterpart methods.

Keywords: Structure-function coupling · Structural connectivity · Func-
tional connectivity · Network detour · Graph neural networks
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1 Introduction

Since the precise influence of underlying structural connectivity (SC) on func-
tional neural activity is pivotal in neuroscience, it is a major goal in the field
to understand structure-function coupling and relationships [23, 24, 2, 30]. The
techniques of diffusion-weighted imaging (DWI) and functional magnetic reso-
nance imaging (fMRI) on whole-brain make it possible to measure system-level
quantitative connectivity on structural and functional, respectively, revealing
white-matter (WM) pathways and functional correlation. Thus, lifting the cur-
tain on structure-function coupling is a vital step to discovering the enigma of
the human brain using multi-modal data.

Structure-function coupling approaches are various from using biophysical
models [14, 27], graph harmonics [24, 17], network communications [10], multi-
variate statistical technique [20], to deep learning-based structure-function map-
ping [5, 25, 22]. However, the correspondence between structural and functional
connectivity is far from perfect [7] due to the unexpected absence of a direct
structural link between regions that are functionally connected [13], especially
on macroscale, such as the default mode network [21, 3]. The observation [10]
of detour connections amplifying functional connectivity shows an opportunity
for structural detours fetching up the absent direct structural connection. Con-
sequently, the imperfect correspondence between structure and function could
be caused by neglecting indirect anatomic pathways in functional connectivity
(FC). This motivates us to propose the detour connectivity (DC).

Importantly, ‘indirect’ functional connections by structural detours support
the emergence of canonical features of FC and geometry of the human brain
[18]. Detour is meanwhile a metric in graph theory [6], and is also indispensable
information in real-world networks. Such as detour route analysis in traffic tasks
[9], tourism detour spots [12], and third-person (referring to a detour connection)
effects on social-media [1] are real-world instances of network detour patterns
contributing to practical applications.

The potential of DC is shown in Fig. 1. In the left, functional correlation
shows denser edges than structural since most pairwise functional connections
are not supported by a direct WM pathway [18]. The problem of such significant
gap is rooted in the limitation of current low-order network models which only
characterize node-to-node relationships. Recurrent connection strength, on the
other hand, is strongly associated with the specialization of behavior in group
test [27], since cognitive behavior is derived by network communities shaped
as cycles. To address this challenge, we put the spotlight on the (high-level)
structural detour paired with each FC. As shown in the right panel of Fig. 1,
we measure detouring links fetching up individual differences by considering
‘indirect’ links so that the connectivity represents brain network communities.

Furthermore, we design a Transformer-style GNN framework named SC-FC
Detour Network (SFDN) to efficiently combine SC and FC for GNN on mul-
timodal MRI data. SFDN benefits from the architecture of the self-attention
mechanism, such that feature representation can involve edge-wise DC embed-



Representing Functional Connectivity with Structural Detour 3

Detour Connectivity (DC)

SC

Coupling

Recurrent 

connection

Dense 

correlation

FCfMRI

DTI

Cycle Detour Detour Detour

Measure structural detours

FC
SC

Fig. 1. Left: Structure-function coupling remains challenging since FC from fMRI is
dense and recurrent connection in SC by DTI is strongly associated with the individ-
ual. Right: Detour connectivity (DC, See Def. 2) measures cyclic and detouring links
of individual SC to weight FC. Detouring links are simultaneously present in cyclic
structure and incomplete cycles addressing various SC of individuals.

ding for high-order interactions between brain regions among macroscale net-
works. Hence, yielding accurate predictions on human cognition.

In experiments, we evaluate the proposed methods on three public datasets,
HCP-A, ADNI, and OASIS (see Sec. 3), by group-wise t-tests, cognitive state de-
tection, and disease classification. Two different atlas, two baselines, and different
lengths of fMRI are used for robustness. We find that DC performs effectively
in network community detection, suggesting a trustful structure-function cou-
pling, and a remarkable improvement of accuracy is demonstrated by SFDN on
both three datasets, after a comprehensive evaluation with respect to various
brain atlases, current state-of-the-arts, and multi-site fMRI data. Codes of our
experiments are released1.

2 Methods

Notations. Assume SC and FC are denoted by adjacency matrices AS ∈ RN×N

and AF ∈ RN×N , respectively, where A·
ij is the connectivity between ith and jth

region. In practice, SC and FC are calculated by the subject-wise normalized WM
pathway counting and the correlation coefficient of neural signals, respectively.
Â· is the binary adjacency matrix after high-pass filtering and self-loop removal.
In this work, high-pass filters are different thresholds of WM pathway counting
and functional correlation. | · | means the cardinality of a set.

2.1 Detour Connectivity

Definition 1 (structural detour (SD)). SD is a pathway in the topology of
SC between functionally connected regions. It is defined as indirect path and is
1 https://github.com/Chrisa142857/SC-FC-Detour
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Fig. 2. (A) Detour connectivity (DC) obtained by structure-function coupling. (B)
The flowchart of SFDN. It takes DC and FC topology as input, where PE stands for
positional encoding, ‘Adj.’ stands for adjacency matrix, and ‘feat.’ stands for features.

obtained by a Depth-First Search, DFS(ÂS , i, j, k) if ÂF
ij > 0, where k is the

maximum searching radius. The searching result is the set of SD, each element
(path) is a node set and includes only the indirect path that has 3 or more nodes.

Definition 2 (detour connectivity (DC)). DC is denoted by AD ∈ RN×N ,
where AD

ij = |DFS(ÂS , i, j, k)| if ÂF
ij > 0, otherwise being zero.

For example, given a subject with SC and FC, as shown in Fig. 2 (A), the pro-
posed DC measures the number of SDs denoted by dashed curves corresponding
to edges of FC that are denoted by solid lines. After structure-function coupling,
the edges of the FC graph are weighted and followed by training an end-to-end
graph transformer with the edge-wise embedding DC.

2.2 SC-FC Detour Network (SFDN)

Applying the edge-wise DC to GNN, we design SFDN as shown in Fig. 2 (B). DC
weights and FC positional encoding (PE) are first embedded as edge-wise tokens,
where PE is defined, e.g., for an edge

−→
ij , by the concatenation of ith and jth

eigenvectors of graph Laplacian matrix L := diag(
[∑N

b=1 Â
F
ab

]
a=1,··· ,N

) − ÂF ,

and hence it can be node permutation invariant. As illustrated by color bars on
the left top in (B), an edge token is formed by concatenating DC and PE and
empty bars indicate zeros to hold the token place for node feature readout at
the end. On the left bottom in (B), the node features Xi and Xj corresponding
to edge tokens for an edge

−→
ij are also concatenated to add with the edge token

after a learnable mapping. Note that the node feature is filled by stacking the
same initial node feature twice for an empty edge token so that the readout has
enough information.

Afterward, tokens are element-wise added (
⊕

) with node features and passed
to l self-attention blocks in the middle in (B). Each block firstly maps tokens
to queries (Q), keys (K), and values (V) and is followed by multi-head self-
attention softmax(QKT

√
d
)V with a feed-forward network and a multi-layer per-

ceptron (MLP). To the end, GNN takes ÂF and the node readout as input to
encode the graph, then a predictor produces the final graph-level prediction.



Representing Functional Connectivity with Structural Detour 5

3 Experimental results

Preprocessing and datasets. To thoroughly evaluate our methods, three pub-
lic datasets are used in our experiments. Three public tools, CONTINUITY,
fmriprep, and smriprep, are used for the data to acquire SC and FC with an
arbitrary atlas. Default hyperparameters2 are set during our experiments.

The Lifespan Human Connectome Project Aging (HCP-A) dataset
[4] is instrumental in task recognition research, offering a comprehensive view of
the aging process. It includes data from 717 subjects, encompassing both fMRI
(n=4,846) and DWI (n=717). It includes data from four brain tasks associated
with memory: VISMOTOR, CARIT, FACENAME, and resting state. In the
related experiments, these tasks are treated as (1) four groups for group analysis
and (2) a four-class classification problem. The details of data preprocessing can
be found in supplementary. We partition brain regions using Gordon [11] or AAL
[26], to obtain SC and FC.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [28]
serves as an invaluable resource, featuring a collection of fMRI (n=250) and pre-
processed SC (n=1,012) with AAL parcellation. In our experiment, 135 subjects
among the dataset that have undergone both DWI and fMRI scans are included
so that structure-function coupling is feasible. Additionally, ADNI includes clin-
ical diagnostic labels, encompassing a spectrum of cognitive states: Cognitive
Normal (CN), Subjective Memory Complaints (SMC), Early-Stage Mild Cogni-
tive Impairment (EMCI), Late-Stage Mild Cognitive Impairment (LMCI), and
Alzheimer’s Disease (AD). Considering the data balance issue, we simplified
these categories into two broad groups based on disease severity: we combined
CN, SMC, and EMCI into ‘CN’ group, while LMCI and AD were grouped as
the ‘AD’ group.

Open Access Series of Imaging Studies (OASIS) dataset [16] presents
a substantial collection of data from 924 subjects, comprising 3,322 fMRI ses-
sions in total. Each subject has fMRI and DWI and is processed with Destrieux
parcellation [8]. Our experiment focused on binary classification: subjects in pre-
clinical stages of AD or those manifesting dementia-related conditions are under
the ‘AD’ group, while healthy individuals are under the ‘CN’ group.

Experimental settings. Our experiments consist of (1) a paired t-test for group
analysis on the HCP-A dataset and (2) accuracy comparisons between baselines
and the proposed SFDN on three datasets. Thresholds of high-pass filtering are
set as 0.1 and 0.5 for SC and FC, respectively, and k = 5 for measuring DC.

1) Group analysis. The proposed measurement of SC-FC coupling is ex-
pected to group-wise express brain network communities that are functionally
related to a cognitive state. In this regard, group analysis is set as a paired t-test
for the sum of each parcel DC per subject between four groups. In comparison,
the sum of FC is tested in the same way for each parcel to show the effectiveness
of detour connectivity. Among t-test results, significant parcels are obtained by
filtering the p-value smaller than 0.05. Gordon parcellation has a fine partition

2 https://github.com/NIRALUser/CONTINUITY, https://www.nipreps.org
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(N = 330) of the brain and is used in this experiment to show if the results
of constructing communities functionally matched with the community defined
by the atlas. Better and trustful performance of the proposed measurement is
hence demonstrated by the distribution of significant parcel numbers focusing
on network communities that have functions for the cognitive task.

2) Accuracy comparison. To show how accurate the proposed SFDN that
is driven by DC, we choose graph convolution network (GCN) [15] and graph
isomorphism network (GIN) [29] as baselines with the same hyperparameter
settings on training and testing, each of which has 4 hidden layers with 768
channels. Node feature is initialized by SC. Layer number l = 2 with 2 heads
for each layer of SFDN. Experiments run on both three datasets with statistic
FC by using correlation of full-length fMRI, as well as dynamic FC is calculated
on the HCP-A dataset to validate DC is effective with 100-length time courses
by sliding window. Each result is the average of 5-fold cross-validation with
30-epoch training per fold and is compared by accuracy and weighted F1-score.

3.1 Group analysis of DC

The proposed structure-function coupling measurement DC is expected to be
significant in corresponding macroscale brain networks of subjects in a specific
cognitive task. Thus, we run a group analysis of DC for the task state against
the resting state of each subject to show if functionally related brain networks
have a significant difference by paired t-test, such as Visual network (VN) and
SensoriMotor (SM) network for the VISMOTOR cognitive task (Fig. 3, right).

As shown in Fig. 3, the distribution of percentages parcels among a brain
community that is significantly different with resting state is various between
Gordon communities by DC. In contrast, FC shows slight differences between
communities, even though the most of regions are significant on three cognitive
task states. For instance, two SM networks, the dorsal attention network (DAN),
default mode network (DMN), and VN are consistently high by DC. These three
communities are active when clicking buttons and staring at the screen during
VISMOTOR [4], and DMN is active during the resting state [19]. Such results
of DC reflect functional activities on corresponding macroscale networks. While
FC shows all communities are significant on all tasks caused by the individual
specialization before structure-function coupling. For descriptions of community
abbreviation in x-axis, see supplementary.

In addition, as shown in Fig. 4, the visualization of p-value of parcels on
the WM surface clearly illustrates communities for the VISMOTOR group be-
ing differentiated from the resting state. The observation on detour connectivity
supports the distribution in Fig. 3 that DC expressed high-order information
between parcels among functionally matched macroscale networks, which are
circled by dashed lines. VISMOTOR task in Fig. 4 requires participants to view
checkerboards on the screen and make motor responses (button presses) indi-
cating which side of the checkerboard shows a color change. As it is designed
to engage visual and motor networks, VN and SM networks respectively cir-
cled by white and green show lower p-values compared to other networks. Apart
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Fig. 3. The ratio distribution of parcels among the corresponding community of Gordon
atlas [11] that are significantly different (p ≤ 0.05) with resting state. Higher ratio
means more significant parcels appeared in a macroscale network. It is evident that our
DC measurements show a more pronounced task-to-task difference than conventional
FC measurements, indicating a greater group-wise separation across tasking-states.

from that DC reflects the high significance of macroscale networks, it also im-
plies that DC is a trustful measurement since highlighted communities other
than VN, SM, and DMN are small and less significant (higher p-value), such as
Cingulo-Opercular Network in cyan and Dorsal Attention Network in yellow.

In contrast, FC highlights parcels are more than DC and are mostly all sig-
nificant, which hardly provides a clue of geometry information for recognizing
functional activities by which macroscale networks. This agrees with the rela-
tively flat distribution shown in Fig. 3 without measuring structural detours.
SC is unchanged in Fig. 4 comparing different cognitive states by the same sub-
ject. Apparently, the group comparison results by our DC measurement not only
closely align with current neuroscience research [4] but also manifest significant
improvement over conventional method.

Table 1. Accuracy comparison between SFDN with baselines on HCP-A, where ‘Stat.’
stands for statistic, ‘Dyn.’ for dynamic, ‘Avg. Imp.’ for average improvement by SFDN,
and ‘Acc.’ for accuracy.

GCN GIN SFDN (GCN) SFDN (GIN) Avg.
Imp.AAL Gordon AAL Gordon AAL Gordon AAL Gordon

Stat.Acc. 85.96±1.2 91.38±1.0 88.28±0.8 92.39±2.4 90.51±0.7 93.22±1.2 89.85±0.5 91.99±1.8 1.89
F1 85.81±1.1 91.24±1.1 88.18±0.7 92.51±2.3 90.43±0.6 93.27±1.3 89.87±0.5 92.06±1.8 1.97

Dyn.Acc. 82.72±0.9 87.43±1.3 84.69±1.2 89.09±1.4 87.82±1.3 93.00±0.8 85.58±0.7 90.10±1.2 3.14
F1 82.35±0.9 87.35±1.3 84.44±1.1 89.10±1.4 87.66±1.3 93.04±0.7 85.46±1.0 90.11±1.1 3.26

3.2 Accuracy of cognitive state classification

Experiments of the four-class classification on the HCP-A dataset show the per-
formance of SFDN is enhanced by DC embedding compared to two baselines
using different atlas or lengths of fMRI time series. Results are listed in Table 1.
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Fig. 4. The visualization of significant parcels by t-tests of DC, FC, and SC between
the resting-state and VISMOTOR state, where p-value is produced by paired t-test.

The average improvement shown in the last column provides a quick overview
of the effectiveness of SFDN in both static and dynamic FC. By increasing
the accuracy and F1 score by approximately 2 and 3 points, respectively, SFDN
demonstrates its efficacy. Altering baseline or atlas is common in brain cognition
modeling research. DC is effective in all cases except for one, e.g., GCN accuracy
using AAL on statistic FC is increased by 4.55 points using DC embedding.

Table 2. Accuracy comparison between SFDN with baselines on ADNI and OASIS
datasets. Bold denotes the best of a dataset.

GCN GIN SFDN (GCN) SFDN (GIN) Avg.
Imp.ADNI OASIS ADNI OASIS ADNI OASIS ADNI OASIS

Acc. 54.07±34.4 87.86±3.4 65.19±16.1 89.51±2.5 74.07±17.2 87.86±3.2 69.63±14.7 89.24±2.9 6.04
F1 45.39±37.7 82.21±4.8 65.73±13.9 86.46±3.6 70.20±13.6 83.76±4.4 70.14±11.7 86.82±3.1 7.78

3.3 Accuracy of AD/CN classification

Results of experiments of AD/CN classification on ADNI and OASIS datasets
are listed in Table 2. Similarly, two baselines are tested and their accuracy and
F1 score are increased by 6 and 7 points on average, respectively. Noteworthy,
GCN is unstable on the ADNI dataset since the standard deviation on accuracy
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and F1 score is over 30. In comparison, SFDN on 5-fold cross-validation is more
stable and shows an improvement from 54.07 to 74.07 of average accuracy.

4 Conclusion

In summary, this paper introduces detour connectivity (DC) as a novel mea-
surement to explore the relationship between structural connectivity (SC) and
functional connectivity (FC) in neuroscience field. DC considers indirect anatom-
ical routes, weighting functional connection strength. Additionally, we propose
the SC-FC Detour Network (SFDN), a Transformer-style graph neural network
that integrates DC embedding into node features through a self-attention mech-
anism. Evaluations of the proposed methods on three public datasets reveal the
effectiveness of SFDN in cognitive state and disease classifications. Results of t-
tests for DC between groups of the cognitive state provide interpretable evidence
by the distinct detection of macroscale brain network community to support the
improvement of SFDN.
Discussions. The limitation of our approach is a lack of consideration about
directed SC, negative FC, and connections between hemispheres.

Disclosure of Interests . The authors have no competing interests to declare.
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