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Abstract. Accurate segmentation of ovarian tumors from medical im-
ages is crucial for early diagnosis, treatment planning, and patient man-
agement. However, the diverse morphological characteristics and het-
erogeneous appearances of ovarian tumors pose significant challenges to
automated segmentation methods. In this paper, we propose MBA-Net,
a novel architecture that integrates the powerful segmentation capabili-
ties of the Segment Anything Model (SAM) with domain-specific knowl-
edge for accurate and robust ovarian tumor segmentation. MBA-Net
employs a hybrid encoder architecture, where the encoder consists of
a prior branch, which inherits the SAM encoder to capture robust seg-
mentation priors, and a domain branch, specifically designed to extract
domain-specific features. The bidirectional flow of information between
the two branches is facilitated by the robust feature injection network
(RFIN) and the domain knowledge integration network (DKIN), enabling
MBA-Net to leverage the complementary strengths of both branches.
We extensively evaluate MBA-Net on the public multi-modality ovar-
ian tumor ultrasound dataset and the in-house multi-site ovarian tumor
MRI dataset. Our proposed method consistently outperforms state-of-
the-art segmentation approaches. Moreover, MBA-Net demonstrates su-
perior generalization capability across different imaging modalities and
clinical sites.

Keywords: Ovarian Tumor Segmentation · Medical Image Segmenta-
tion · Segment Anything Model · Bidirectional Aggregation Network.

1 Introduction

Ovarian cancer is one of the most lethal gynecological malignancies, accounting
for over 200,000 deaths globally each year [1]. Early and accurate detection and
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delineation of ovarian tumors is crucial for improving prognosis, treatment plan-
ning, and survival rates. However, the manual segmentation of ovarian tumors
from medical images is a tedious, time-consuming, and subjective process, often
leading to high inter- and intra-observer variability [2,3]. This has motivated the
development of automated computational methods for ovarian tumor segmen-
tation, which can provide objective and reproducible results, thereby assisting
clinicians in making more informed decisions and ultimately improving patient
care [4, 5].

Traditional segmentation methods like graph cuts and level sets rely heavily
on hand-crafted features and prior assumptions about tumor appearance, limit-
ing their performance and generalization capability [6,7]. Recent years have seen
a paradigm shift towards deep learning for medical image segmentation. Convo-
lutional neural networks (CNN) and Transformers have achieved state-of-the-art
performance by automatically learning hierarchical representations directly from
data [8–12].

Nevertheless, automatic ovarian tumor segmentation has persisted as an open
challenge, largely due to the significant diversity across ovarian cancer sub-
types [13,14]. Over 30 histological classifications have been documented, with tu-
mors exhibiting substantial variance in morphology, growth patterns, and imag-
ing phenotypes [15]. Irregular tumor shape and ambiguous tumor boundaries
further complicate segmentation tasks, especially in ultrasound [16], which is
heavily utilized for ovarian cancer screening and diagnosis. Additionally, the lack
of data on some relatively rare subtypes has constrained model performance and
generalizability across imaging modalities and clinical centers [17]. These factors
lead to suboptimal performance for complex subtypes like high-grade serous car-
cinomas and mucinous cysts, potentially impacting staging accuracy, treatment
planning, and patient outcomes.

Recent advancements in visual foundation models, such as the Segment Any-
thing Model (SAM) [18], have demonstrated exceptional promise in imparting
model generalization for medical image analysis [19]. SAM has exhibited the
aptitude for few-shot generalization and shape sensitivity that could potentially
address challenges in automatic ovarian tumor segmentation.

In this work, we present MBA-Net, a novel SAM-driven bidirectional ag-
gregation network that effectively adapts and extends SAM’s powerful segmen-
tation capabilities to the ovarian tumor domain. The core innovation lies in
synergistically composing SAM with a specialized CNN encoder branch through
bidirectional feature aggregation. Specifically, our proposed network employs a
hybrid encoder architecture consisting of two parallel branches: 1) a prior branch
that inherits the SAM encoder to capture robust segmentation priors, and 2) a
domain branch composed of multiple residual blocks, specifically designed for
extracting domain-specific features. The shallow features from the prior branch
are progressively aggregated into the domain branch via a cascade of robust fea-
ture injection networks (RFIN). RFIN enables the domain branch to incorporate
the robust segmentation priors captured by the prior branch, guiding the extrac-
tion of domain-specific features. Conversely, the deep features from the domain
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branch are reciprocally integrated into the prior branch through several domain
knowledge integration networks (DKIN). DKIN allows the prior branch to lever-
age the domain-specific knowledge extracted by the domain branch, enhancing
its ability to adapt to the unique characteristics of ovarian tumors.
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Fig. 1. The architecture of MBA-Net. It has two parallel branches: (1) the prior branch
captures robust features, and (2) the domain branch extracts domain-specific features.
The bidirectional feature aggregation between the two branches is achieved through
(a) the robust feature injection network (RFIN) that injects SAM embeddings into
the domain branch and (b) the domain knowledge integration network (DKIN) that
integrates CNN features into the prior branch. The prompt encoder and mask decoder
are inherited from SAM for mask prediction.

We extensively evaluate MBA-Net on two challenging datasets: a public
dataset of ovarian tumor ultrasound images and an in-house dataset of ovar-
ian tumor MRI scans. Comprehensive experiments and comparisons against
state-of-the-art methods demonstrate MBA-Net’s superior segmentation accu-
racy, robustness to tumor heterogeneity, and strong generalization across imaging
modalities and clinical centers.

2 Methodology

2.1 Overview of MBA-Net

MBA-Net is a novel architecture that synergistically integrates the powerful
general segmentation capabilities of the SAM with a domain-specific branch
tailored for ovarian tumor segmentation. As depicted in Fig. 1, the encoder of
MBA-Net comprises two parallel branches: the prior branch and the domain
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branch. The prior branch leverages the pre-trained image encoder from SAM.
This branch operates on high-resolution images to capture global contextual
information. In contrast, the domain branch is specifically designed to extract
domain-specific features from lower-resolution images. It consists of a series of
residual blocks with squeeze-and-excitation modules [20], enabling the learning
of discriminative tumor representations.

The decoder of MBA-Net inherits the mask decoder from SAM. The fused
features from the encoder are passed through the decoder to obtain the final
segmentation output. Similarly, MBA-Net also inherits SAM’s prompt encoder.
We feed a box prompt the same size as the image into the prompt encoder for
automatic segmentation.

During training, the prior and domain branches process their respective input
images to extract image embeddings. These embeddings are then fused through
the bidirectional aggregation, enabling the model to learn a unified representa-
tion that combines the strengths of both branches. The decoder takes the fused
embeddings as input and generates the segmentation masks.

2.2 The Domain Branch

The domain branch is designed to extract domain-specific features from the input
image xc with a resolution of 256×256. This branch consists of 8 layers, each
implemented as a residual block with channel attention.

Let f i
c denote the output feature map of the i-th layer in the domain branch.

The first two layers of the domain branch are responsible for downsampling
the input image xc from a resolution of 256×256 to 64×64. Starting from the
third layer, the domain branch receives embeddings from the prior branch at
specific locations. The prior branch, which operates on a higher-resolution image
xs, has a total of 4m layers arranged in a transformer architecture (m=8 in
our work). The layers at positions {m, 2m, 3m} of the prior branch are global
attention layers, enabling the capture of global contextual information. These
global attention layers are connected to the {3, 4, 5} layers of the domain branch,
respectively.

The feature maps are transmitted back to the prior branch in the later layers
of the domain branch, specifically layers {6, 7, 8}. These layers aim to pro-
vide domain-specific features to the prior branch, enabling it to adapt its rep-
resentations to the characteristics of ovarian tumors. The feature transmission
is achieved through residual connections, where the output feature maps of the
domain branch are added to the embeddings of the prior branch at layers {4m-2,
4m-1, 4m}. Finally, the output of the domain branch and the prior branch are
combined through element-wise addition.

2.3 Bidirectional Feature Aggregation

Our architecture is fundamentally anchored in its bidirectional feature aggrega-
tion mechanism, a critical structure enabling seamless information flow between
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the prior and domain branches. This mechanism fosters a dynamic interchange
of features and effectively enhances the network’s ability.

Robust Feature Injection Network: As illustrated in Fig. 1a, we devise
lightweight residual connections to enable the robust features of the prior branch
to be injected into the shallow layers of the domain branch.

We denote the output embedding generated by the i-th layer of the prior
branch as fs

i ∈ RN×C , where N is the number of tokens. Likewise, the j-th
residual block generates a counterpart feature map f c

j ∈ RH×W×Cc , where H,
W , and Cc represent its height, width and number of channels respectively.

To fuse robust features into the domain branch, a convolution layer is first
applied to project fs

i into an aligned space:

f̃s
i = σ(IN(Waf ∗R(fs

i ) + baf )) (1)

where Waf ∈ RC×Cc×k×k and baf ∈ RCc represent the weight and bias of the
convolution layer transforming fs

i from C to Cc channels. R represents reshaping
two-dimensional embeddings into three-dimensional features. IN and σ denote
instance normalization and Leaky ReLU activation. The projected embedding
f̃s
i is then combined with f c

j using residual addition:

f c′
j = f c

j + f̃s
i , ∀j ∈ J (2)

where J denotes the index set {3, 4, 5} for low-level residual blocks.

Domain Knowledge Integration Network: Our proposed DKIN is shown
in Fig. 1b. We denote the output feature map of the j-th residual block as
f c
j ∈ RH×W×C and the output embedding generated by the i-th transformer

layer as fs
i ∈ RN×C .

To enable domain-specific features to enhance transformer layers in the prior
branch, we apply residual addition to combine f c

j with fs
i :

fs
i
′ = MSA(LN(fs

i )) + LN(R(f c
j )) + fs

i , ∀i ∈ I (3)

where LN and MSA denote layer normalization and multi-head self attention
module. R represents reshaping three-dimensional features into two-dimensional
embeddings. I denotes the index set {4m-2, 4m-1, 4m} for high-level transformer
layers. This top-down dissemination enables advanced domain knowledge to di-
rectly guide deeper transformer layers in a tailored manner.

3 Experiments and Results

3.1 Datasets and Implementation Details

To validate the effectiveness of our proposed MBA-Net, we evaluate our method
on a public multi-modal ovarian tumor ultrasound segmentation dataset [17]
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Table 1. Quantitative comparison of our proposed MBA-Net against other state-of-
the-art approaches on the multi-modality ovarian tumor ultrasound dataset. The best
results are highlighted in bold.

Methods Chocolate cyst Serous
cystadenoma Teratoma Theca cell

tumor Simple cyst Mucinous
cystadenoma

High grade
serous

Dataset: Multi-modality ovarian tumor ultrasound [17]

U-Net 86.48±15.88 92.40±9.83 83.45±16.99 89.32±6.15 89.67±13.83 89.10±11.68 83.16±12.54
TransFuse 82.40±21.09 90.52±10.69 80.15±15.30 89.19±7.07 90.64±12.26 90.41±8.52 82.34±11.02
TransUNet 82.38±19.67 91.06±11.53 79.33±16.58 89.24±8.16 87.18±12.33 89.32±10.34 81.31±11.77

UTNet 88.54±13.80 93.78±6.42 86.59±13.58 91.90±4.67 91.02±13.97 90.32±6.97 84.22±11.44
MBA-Net 90.39±11.01† 92.98±5.58∼ 89.34±7.75‡ 92.31±5.11∼ 92.22±11.92† 90.67±6.70∼ 88.75±7.16‡

Cross-modality performance

U-Net 69.44±27.50 83.75±13.10 60.43±29.05 77.75±19.59 75.47±30.43 85.98±13.60 48.85±32.38
TransFuse 76.74±17.96 83.52±13.77 62.57±28.01 76.30±18.81 75.42±31.42 88.61±7.50 47.55±33.59
TransUNet 76.13±19.43 85.74±13.92 60.75±28.23 77.03±18.53 78.84±26.21 87.03±11.84 45.88±33.38

UTNet 75.55±14.82 81.53±14.18 61.28±30.26 73.77±19.07 77.51±25.54 81.56±7.26 50.34±31.61
MBA-Net 78.89±13.36‡ 86.51±12.68‡ 68.86±26.01‡ 80.64±12.67‡ 82.98±21.18‡ 90.81±5.85† 70.60±22.79‡

∼:p-value>0.05, †:p-value>1e−3, ‡:p-value<1e−3, in comparison to the second-best or best results.

and an in-house multi-site ovarian tumor MRI dataset. We employ stratified
sampling to maintain a consistent distribution of tumor types, using a 6:1:3 split
for training, validation, and testing for both datasets. Additionally, to assess the
robustness of the model, we perform cross-domain and cross-modality testing
using all available images.

After excluding samples of normal ovaries, the ultrasound dataset consists
of seven different tumor types: chocolate cyst, serous cystadenoma, teratoma,
theca cell tumor, simple cyst, mucinous cystadenoma, and high-grade serous
carcinoma. We utilize the ultrasound images for training, evaluating the model’s
performance and assessing its robustness by contrast-enhanced ultrasonography
images.

The MRI dataset comprises 493 patients from five medical centers, encom-
passing five distinct tumor types: serous cystadenocarcinoma, mucinous cys-
tadenocarcinoma, serous cystadenoma, mucinous cystadenoma, and clear cell
ovarian carcinoma. We employ data from one center for training and evaluating
the model’s performance while leveraging the other four centers to assess its
robustness. Detailed information about both datasets is provided in Appendix.

We compare MBA-Net with several state-of-the-art medical image segmen-
tation networks, including U-Net [21], TransFuse [22], TransUNet [23], and UT-
Net [24]. It is important to note that direct comparison between our fully au-
tomatic MBA-Net and interactive segmentation models like SAM and Med-
SAM [25] is not appropriate. These models rely on user-provided prompts, which
gives them an inherent advantage in localization but limits their applicability
in fully automated workflows. We use Dice score as the evaluation metric and
Wilcoxon signed-rank tests to assess statistical significance between our MBA-
Net and other methods. We apply consistent data augmentation techniques to
ensure a fair comparison among different methods, including random intensity
scaling, random intensity shifting, and random flipping. The training and test-
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Table 2. Quantitative comparison of our proposed MBA-Net against other state-of-
the-art approaches on the multi-site ovarian tumor MRI dataset. The best results are
highlighted in bold.

Methods Serous
cystadenocarcinoma

Mucinous
cystadenocarcinoma

Serous
cystadenoma

Mucinous
cystadenoma

Clear cell
ovarian carcinoma

Dataset: Multi-site ovarian tumor MRI

U-Net 78.33±21.94 82.09±20.75 82.24±15.22 90.02±9.80 89.47±10.10
TransFuse 81.17±19.27 81.48±17.97 79.44±18.06 92.94±7.59 89.88±12.23
TransUNet 80.91±18.41 83.56±15.72 85.16±12.53 91.36±8.62 86.92±10.08

UTNet 79.69±21.05 83.82±16.67 86.69±14.40 91.45±6.83 91.61±8.94
MBA-Net 83.51±17.14‡ 86.75±12.18‡ 86.42±11.96∼ 93.79±6.55† 94.73±5.50‡

Cross-site performance

U-Net 74.05±23.88 69.75±23.68 71.14±25.39 90.33±11.90 81.73±19.96
TransFuse 73.11±22.06 70.79±21.41 75.72±20.26 88.49±14.74 80.29±21.33
TransUNet 72.99±20.11 75.42±17.05 78.72±18.88 89.54±15.44 85.84±14.62

UTNet 75.79±22.41 77.92±18.13 74.40±21.56 90.77±13.82 84.47±13.77
MBA-Net 80.35±19.29‡ 83.47±16.26‡ 83.18±14.97‡ 91.19±11.76∼ 89.11±11.92‡

∼:p-value>0.05, †:p-value>1e−3, ‡:p-value<1e−3, in comparison to the second-best or best results.

ing processes are conducted on an RTX 4090 GPU with 24GB of memory. Each
model is trained for 50 epochs. During the training phase, we employ the SGD
optimizer, and the initial learning rate is 3e-4.

3.2 Results

We evaluate the performance of MBA-Net and compare it with state-of-the-art
segmentation methods on the multi-modality ovarian tumor ultrasound dataset.
The results are summarized in Table 1. MBA-Net achieves the highest average
Dice score, outperforming all other methods. To assess the robustness of MBA-
Net, we perform cross-modality evaluation by testing the model on contrast-
enhanced ultrasonography images. As shown in Table 1, MBA-Net exhibits su-
perior generalization capability, surpassing all other methods by a significant
margin. Remarkably, MBA-Net has substantially improved the segmentation of
teratoma and high-grade serous carcinoma.

We further validate the performance of MBA-Net on the multi-site ovarian
tumor MRI dataset. The results are presented in Table 2. MBA-Net consistently
outperforms other methods across most tumor types. It also demonstrates excep-
tional generalization ability in the cross-site setting. The superior performance
of our proposed method in these scenarios demonstrates its potential to enhance
standardization of ovarian tumor assessment across different imaging protocols
and healthcare institutions, potentially leading to more consistent diagnosis and
treatment planning.

Fig. 2 presents the visual comparison of the segmentation results obtained
by different methods on representative examples from both two datasets, illus-
trating the superior performance of MBA-Net in accurately delineating ovar-
ian tumors with diverse morphological characteristics and imaging modalities.
Notably, MBA-Net shows improved performance in capturing fine details and
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complex boundaries, particularly in cases where other methods struggle with
heterogeneous tumor appearances or ambiguous edges.

Fig. 2. Visual comparison of segmentation results obtained by different methods on rep-
resentative examples from (a-b) the multi-modality ovarian tumor ultrasound dataset
and (c-d) the multi-site ovarian tumor MRI dataset. GT: ground truth.

Ablation Studies To investigate the effectiveness of the proposed bidirectional
feature aggregation mechanism, we conduct ablation studies on the ovarian tu-
mor ultrasound dataset. We evaluate the impact of varying the number of RFIN
and DKIN modules on the segmentation performance. The results are summa-
rized in Table 3. The best performance is achieved when both RFIN and DKIN
modules are utilized, with the default setting of 3 RFIN and 3 DKIN modules
yielding an average Dice score of 90.75%. This result validates the effectiveness
of the bidirectional feature aggregation mechanism in leveraging the complemen-
tary strengths of the prior branch and the domain branch.

4 Conclusion

In this paper, we present MBA-Net, a novel architecture for ovarian tumor seg-
mentation that integrates the powerful segmentation capabilities of the SAM
with domain-specific knowledge through bidirectional feature aggregation. The
proposed network employs a hybrid encoder architecture, where the encoder
consists of a prior branch, which inherits the SAM encoder to capture robust
segmentation priors, and a domain branch, which is specifically designed to ex-
tract domain-specific features. The robust feature injection network (RFIN) and
the domain knowledge integration network (DKIN) facilitate the bidirectional
flow of information between the two branches, enabling MBA-Net to leverage
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the complementary strengths of both branches. Extensive experiments on multi-
modality ovarian tumor ultrasound and multi-site ovarian tumor MRI datasets
demonstrate the superiority of MBA-Net in terms of segmentation accuracy, ro-
bustness to tumor heterogeneity, and generalization capability across different
imaging modalities and clinical sites.

Table 3. Ablation studies of the different feature fusion strategies.

RFIN DKIN Avg. Dice (%) RFIN DKIN Avg. Dice (%) RFIN DKIN Avg. Dice (%)

0 1 85.84 0 3 86.15 0 6 86.58
1 1 88.69 1 3 88.43 1 6 89.06
2 1 88.01 2 3 90.19 2 6 89.82
3 1 88.25 3 3 90.75 3 6 90.47
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