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Abstract. We investigate the role of uncertainty quantification in aiding
medical decision-making. Existing evaluation metrics fail to capture the
practical utility of joint human-AI decision-making systems. To address
this, we introduce a novel framework to assess such systems and use
it to benchmark a diverse set of confidence and uncertainty estimation
methods. Our results show that certainty measures enable joint human-
AI systems to outperform both standalone humans and AIs, and that for
a given system there exists an optimal balance in the number of cases to
refer to humans, beyond which the system’s performance degrades.

Keywords: Uncertainty · Selective Classification · Ultrasound

1 Introduction

Both AI and humans are susceptible to errors, albeit of different types [16].
This diversity in errors presents a unique opportunity: by leveraging notions of
confidence or uncertainty, we can synergize AI with human expertise to enhance
the joint decision-making process. In a clinical setting, collaborative human-AI
systems have the potential to surpass the effectiveness of both doctors or AI
working in isolation. But currently we lack meaningful metrics to evaluate the
performance of such joint systems.

Consider the scenarios depicted in Figure 1 where the goal is to examine an
image x and identify if the patient has cancer. A standalone AI model can make
a prediction, ŷ, as to whether cancer is present or not. Adding some notion of
confidence or uncertainty to the model, ψ3, provides an estimate of the model’s
reliability (Figure 1b). However, this setup fails to capture the practical impact
of a certainty estimate. A pragmatic use case is depicted in Figure 1c, where
certainty is used for selective classification. Here, the certainty estimate is used

3 Confidence and uncertainty are related but distinct concepts. Briefly, confidence is an
inherent property of virtually any modern probabilistic classifier, i.e. the probability
output is a form of model confidence. The term “uncertainty” is usually reserved for
Bayesian models which can yield multiple stochastic predictions for each sample. We
use the term ‘certainty’, denoted by ψ, to refer to either confidence or uncertainty.
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Fig. 1. Different approaches to integrate AI in the diagnostic process.

to decide whether the model should abstain to avoid making a wrong prediction
– if the model’s confidence or uncertainty value crosses a threshold, it abstains.
However, selective classification, which has seen a recent rise in popularity [11],
fails to account for what happens to the samples for which the model abstains.
Instead, we should consider a joint human-AI system, such as the one depicted in
Figure 1d, which refers AI-uncertain cases to a doctor. Critically, no evaluation
framework exists to assess such joint human-AI diagnostic systems.

In this study, we address this need by proposing a novel evaluation framework
for assessing joint human-AI classification systems. Our framework assesses how
AI models, equipped with confidence or uncertainty measures, interact with doc-
tors according to clinically informed metrics. By measuring the joint system risk
(misclassification rate) and F1, we can assess its performance for various levels
of certainty – a variable which can be adjusted according to the availability of
doctors. Through extensive evaluation on a unique ultrasound dataset with mul-
tiple doctor assessments per case, we find that when an appropriate confidence
threshold is chosen, joint systems outperform standalone humans and AIs. We
consider different certainty estimation techniques in this joint setting, and while
we find some differences between the methods, we do not find one to clearly
dominate. Importantly, our experiments show that there is an optimal balance
in the number of cases to refer to humans, beyond which the system’s perfor-
mance degrades – i.e.it is not always beneficial to defer to doctor assessments.
Finally, we apply our proposed framework using various measures of confidence
or uncertainty and examine the results.

2 Related Work

There exist two schools of thought on how to evaluate model confidence and
uncertainty: (1) to assess the quality of the estimate itself, or (2) to assess the
utility of the estimate, as depicted in Figure 1. In the first approach [15,17], met-
rics such as the Expected Calibration Error (ECE) [9], Negative Log-Likelihood
(NLL), and Brier score [3] serve as valuable indicators of the AI’s reliability.



Assessing joint human-AI systems based on uncertainty estimation 3

(a) (b) (c) (d)

Fig. 2. Certainty estimates in joint human-AI systems. (a) AI and doctor performance
varies according to model certainty – doctors outperform the model when its certainty
is low. (b) Naively computing risk coverage without considering humans in the system
(as in AURC) is problematic – it appears optimal for the model to always abstain. (c)
The risk coverage of the joint system has a clear optimal operating point. (d) The joint
system’s optimal point can vary depending on the quality of human predictions.

Better scores indicate the model’s alignment with the true data distribution.
Proponents of the utility evaluation approach point out that these metrics do
not capture the estimate’s impact on performance [6,11,8], which is often of most
practical interest. They argue for measuring the area under the receiver operat-
ing characteristic curve of a misclassification detector, AUCmis,or the selective
classification performance using the area under the risk coverage curve, AURC.
However, AUCmis is blind to the actual classification performance [6,11] and
AURC is an aggregate metric that treats all possible abstain rates the same [8]
when only certain ranges are of practical interest. But more importantly, these
approaches fail to account for what happens to the samples the model abstains
from predicting.

Although informative, these metrics are not fully appropriate for evaluating
certainty estimates in clinical contexts, as seen in conflicting studies. Bungert et
al . [4] claimed current methods fall short in clinical reliability based on AURC
evaluations, whereas Alves et al . [1] found ensemble-based uncertainty estimates
promising for misclassification detection. These discrepancies underscore the
need for a comprehensive evaluation framework for joint human-AI systems,
a gap in the literature which our study aims to address.

3 Joint Human-AI Evaluation Framework

Intuitively, we understand that AI with low certainty, i.e. low ψ, correlates with
higher error rates. We observe in Figure 2a that a similar correlation is also true
for humans. Importantly, there is a crossover point at which the human error rate
is lower than the AI’s. This can be exploited to achieve better clinical outcomes
by referring patients with low certainty ψ to a human reader. But naively trying
to accomplish this using risk coverage for the selective classification model, like
AURC, is problematic because it fails to consider the abstained samples. This
results in a monotonically increasing risk function, incorrectly suggesting that
the optimal strategy for the model is to always abstain (Figure 2b).
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The evaluation framework should consider humans and AI as a joint system.
The AI is comprised of a classifier and a certainty estimator,

ŷ = argmax
y

Pm(y|x, θ) and ψ = Φ[Pm(y|x, θ)] (1)

where ŷ is the predicted class, θ are the weights of the classifier Pm, and Φ is
a function that estimates the confidence or uncertainty of a prediction, ψ. For
the AI-as-first-reader scenario in Figure 1d, if the certainty ψ is higher than a
preset threshold, ψ > α, a prediction is made by the AI. Otherwise, the patient
is sent to a human reader who makes the prediction. The certainty threshold
α is a hyperparameter of the joint-human AI system. It determines the model
coverage, τ , the proportion of instances for which the model makes predictions
as opposed to abstaining because of high uncertainty or low confidence.

Crucially, we evaluate the correctness of all predictions, irrespective of who
or what made them. We measure the risk-coverage of the joint system,

JRC(τ) = Rm(τ) +Rh(τ) (2)

where Rm(τ) and Rh(τ) are the risk, i.e. error-rate, of the model and humans at
a model coverage τ . The result is a joint risk-coverage curve, as seen in Figure
2c. When τ = 1, only the AI makes predictions and the joint risk reduces to the
risk of the model alone, Rm(1). When τ = 0, only humans make predictions, so
the joint risk reduces to Rh(0). A poor certainty estimate, which assigns random
values to confidence or uncertainty, yields a straight line over different values of
τ (the dashed red line). A good certainty estimate sorts cases to ensure low risk
for both AI and humans. It has the potential to perform better than either AI or
humans alone, as depicted by the green curve. The joint system performance can
be improved by enhancing either the classifier, the humans, or the uncertainty
estimate. Figure 2d shows the effects of improving human performance.

Furthermore, clinical tasks must consider if the errors are Type-I or Type-II.
Thus, we measure the joint true positives and false positives and negatives to
calculate the joint F1, i.e., the harmonic mean of precision and recall, at coverage
τ ,

JF1C(τ) =
2 ∗ TPj(τ)

2 ∗ TPj(τ) + FPj(τ) + FNj(τ)
(3)

Finally, we provide summary metrics that compute the partial area under
the JRC and JF1C curves. These consider a range of pertinent coverage values
τ ∈ [γ, 1.0], with suggested values of γ = {0.5, 0.75, 0.9}.

pAUJF1Cγ =

∫ 1.0

γ

2 ∗ TPj(τ)

2 ∗ TPj(τ) + FPj(τ) + FNj(τ)
dτ (4)

and partial area under the JRC curve score, given by

pAUJRCγ =

∫ 1.0

γ

Rm(τ) +Rh(τ)dτ (5)
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4 Experiments

Data. Our study utilized Ovarian tumour Machine Learning Collaboration -
Retrospective Study (OMLC-RS) dataset comprising 17,119 ultrasound images
from 3,652 patients, gathered from 20 centers across eight countries using 21
different ultrasound systems. The task is to classify ovarian tumors in ultrasound
images. The ground truth for model training and evaluation was histological
diagnosis. A total of 66 doctors, including 33 experts with over five years of
experience, assessed the exams. Each exam was assessed by approximately 14
doctors.
Confidence estimates. We consider two approaches for estimating the cer-
tainty of AI: confidence-based and entropy-based. These approaches can be ap-
plied to the various model types described below. The confidence measure ψ is
simply the maximum probability assigned by the model Pm,

ψ = Φ[Pm(y|x, θ)] = max
y

Pm(y|x, θ) (6)

Uncertainty estimates. Alternatively, uncertainty can be estimated using the
entropy of the predicted probabilities,

ψ = Φ[Pm(y|x, θ)] = −H[Pm(y|x, θ)] =
∑
y

Pm(y|x, θ) lnPm(y|x, θ) (7)

Higher entropy indicates lower certainty ψ. In both Eq. 6 and Eq. 7, point
estimates are used to estimate certainty.

Some of the models we consider are Bayesian NN approximations, i.e. a
distribution (or a set) of weights from which we can sample a model in order
to make a prediction, θ ∼ p(θ|D), where D is the dataset. For these models,
the entropy of the average of multiple predictions is called the total predictive
entropy and we use its negative as our certainty estimate,

ψ = Φ[Pm(y|x, θ)] = −H[Ep(θ|D)[Pm(y|x, θ)]] (8)

Under some strong assumptions, we can further decompose predictive entropy
into epistemic and aleatoric components [7]. We again use their negatives.

ψ = Φ[Pm(y|x, θ)] = −Ep(θ|D)[H[Pm(y|x, θ)]] (9)

ψ = Φ[Pm(y|x, θ)] = Ep(θ|D)[H[Pm(y|x, θ)]]−H[Ep(θ|D)[Pm(y|x, θ)]] (10)

AI models. We apply the certainty estimates described above to a variety of
neural networks: some standard classifiers, and some built with uncertainty esti-
mation in mind. All use an ImageNet [5] pretrained ResNet50 [10] backbone. We
train the models image-wise but evaluate patient-wise. We consider the following
models: (1) Maximum Likelihood Estimation (MLE) training, i.e. the standard
deep learning approach using cross-entropy loss; (2) Temperature Scaling (TS)
[9] where the model’s probabilities are calibrated using temperature scaling on
the validation set; (3) Test Time Augmentation (TTA) [2] where we apply 128
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Fig. 3. Joint coverage curves for assessing the performance of human-AI systems.

different image augmentations at inference and use the median prediction; (4)
Monte Carlo Dropout (MCD) [7]–a Bayesian NN approximation which makes
multiple predictions using different dropout configurations; (5) Deep Ensembles
[12] which uses an ensemble of NNs4; (6) Stein Variational Gradient Descent
(SVGD) [13], a modified gradient descent method for training a diverse ensem-
ble of NNs jointly; (7) Stochastic Weight Averaging Gaussian (SWAG) [14], we
fit a normal distribution over weights using model checkpoints.

InD and OoD experiments. Using the models, certainty measures, and data
described above, we conduct the following experiments. First, we assess how
the joint human-AI systems perform when deployed in-domain (InD). For this,
the dataset was divided into train, validation and test sets (3097/277/278 sam-
ples) using stratified sampling across all centers on a patient-wise basis. We also
investigate how the joint human-AI systems perform when deployed in out-of-
domain (OoD) settings. We consider both unseen hospitals (OoD-H) and unseen
ultrasound devices (OoD-D). For OoD-H, we leave out 2 hospitals as the test
set, and for OoD-D we leave out 15 devices as the test set (GE Voluson devices
dominate our dataset, and are used for training and validation). For all experi-
ments, for each of the 7 AI model types we report results using the confidence
or uncertainty measure that yields the lowest joint risk for any threshold α.

Arbitration experiments. In addition to the AI-as-first-reader strategy shown
in Figure 1d, we investigate an arbitration scenario where an AI and a non-
expert doctor concurrently assess a patient (Figure 5 in Supplementary). In case
of disagreements or AI abstaining, an expert 2nd human reader makes the final
decision. For this setting, we consider InD, OoD-H, and OoD-D, along with the
various AI models and certainty measures described above.
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Fig. 4. Performance of humans, AI-standalone, and AI-first-reader joint system at
optimal coverage τ . Boxplots indicate 95% confidence intervals through bootstrapping.

5 Results and Discussion

In Figure 3 we present the main results, comparing joint human-AI systems
using different certainty methods against standalone human performance (sub-
divided by human expertise in Supplementary Figure 6). These experiments
cover different reading strategies over situations where the system is deployed
in environments identical to the training context (InD), and in novel contexts,
including out-of-domain deployments characterized by different hospitals (OoD-
H) and imaging devices (OoD-D). We find that all joint systems surpass both
standalone doctors and standalone models. For some settings, we observe strong
performance and efficiency gains from the AI-as-first-reader strategy. For exam-
ple, for images from unseen devices, joint systems achieve a boost in F1 score
of ≈ 4% over both AI and doctors, while demanding 75% less of doctors’ time.
Looking at arbitration as a reading strategy, we observe the same general trends
as for AI-as-first-reader, noting that the stability of joint system performance
across different model types and model coverage is improved by having more
doctors involved in the process and by having experienced doctors make the fi-
nal decision. In Figure 4, we present the peak performance of the AI-first-reader
joint system at the ideal model coverage τ . This perspective highlights the im-
provements achieved by the joint system and AI in isolation over traditional
human-only approaches in the in-domain (InD) scenario. However, for out-of-
domain (OoD) deployments, the AI-standalone’s advantage disappears. Looking
back at Figure 3, we observe that, for OoD data, the joint system relies on more
doctor assessments to perform well, indicating the ability of the AI to defer to
human judgment when encountering unfamiliar data patterns. Finally, in Table
1, we provide our summary metrics from Eq. 4 alongside established confidence
and uncertainty metrics for comparison.
Which certainty estimate is the best? While our study did not identify
a single certainty estimate as being definitively superior, we observed that in-
tegrating any of the evaluated models within a collaborative human-AI frame-
work consistently enhanced diagnostic accuracy beyond what could be achieved

4 We enforce diversity by minimizing cosine similarity between the ensemble weights.
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Table 1. Established measures of confidence and uncertainty along with pAUJF1Cγ .
A complete list of metrics on InD, OoD-H and OoD-D is given in the Supplementary.

Method
F1 ↑ NLL ↓ ECE ↓ AURC ↓ AUCmis ↑ pAUJF1C0.5 ↑ pAUJF1C0.9 ↑

InD OoD-H InD OoD-H InD OoD-H InD OoD-H InD OoD-H InD OoD-H InD OoD-H

MLE 0.793 0.723 0.410 0.452 0.047 0.039 0.079 0.092 0.727 0.760 0.394 0.368 0.075 0.069
TTA 0.789 0.717 0.422 0.489 0.065 0.073 0.076 0.100 0.732 0.746 0.393 0.364 0.074 0.068
TS 0.787 0.723 0.409 0.451 0.053 0.041 0.077 0.092 0.740 0.760 0.394 0.368 0.075 0.068
MCD 0.759 0.732 0.411 0.470 0.043 0.070 0.080 0.102 0.771 0.719 0.393 0.366 0.073 0.069
SVGD 0.741 0.729 0.417 0.442 0.051 0.032 0.085 0.087 0.798 0.781 0.388 0.374 0.071 0.069
SWAG 0.783 0.717 0.388 0.466 0.060 0.057 0.067 0.090 0.773 0.781 0.390 0.369 0.074 0.068
Ensemble 0.787 0.760 0.392 0.428 0.027 0.037 0.068 0.079 0.747 0.752 0.390 0.380 0.073 0.071

by either humans or AI systems operating independently. The performance of
these methods varies significantly depending on the level of coverage, τ , chosen.
For example, when using AI-as-first-reader for InD cases, the joint F1 score for
the SVGD method peaks at a coverage level of τ = 0.6. In contrast, the TS
method reaches its highest performance with considerably less reliance on hu-
man input, at a coverage level of τ = 0.95. Our summary metric pAUJF1Cγ

(γ ∈ {0.5, 0.75, 0.9}) shows very little difference between certainty measures on
InD data. For OoD-H data, however, Deep Ensembles seem to offer a slight
advantage on average. Remarkably, MLE, the simplest approach to certainty es-
timation, is competitive with more sophisticated methods – particularly for InD
data. This suggests that even straightforward certainty estimation methods can
be valuable in decision-making processes of joint human-AI system.

Is there a need for a new certainty metric to evaluate joint human-AI
systems? We argue that yes, there is, for two main reasons. (1) Metrics that as-
sess the quality of the estimate, such as NLL or ECE, fail to capture the practical
utility of certainty estimates – a consideration of particular relevance for clini-
cal applications. Metrics that do consider utility, such as AURC and AUCmis,
overlook the implications of model abstention on system performance. As seen in
Table 1, these shortcomings can lead to misleading conclusions. For example, TS
[2] would seem like a poor certainty estimation method for InD based on the F1,
NLL, ECE, AURC, or AUCmis metrics. But in reality, we find TS outperforms
the other methods when used to support doctors, as shown in Figure 4-InD.
(2) Existing metrics do not consider the efficiency of healthcare resource utiliza-
tion. By inspecting the joint coverage curves, hospital administrators can tailor
AI model usage to align with available resources, optimizing both performance
and resource allocation. For these reasons, we argue that joint coverage curves
should be the primary analysis tool when evaluating joint human-AI systems.
When benchmarking certainty estimates, utility in joint human-AI systems, as
measured by pAUJF1Cγ , should be reported alongside other established mea-
sures.

Other considerations. Our findings reveal a ‘sweet spot’ of human involve-
ment in the joint human-AI system, beyond which additional human oversight
harms performance. When applied to new settings, such as unfamiliar hospitals
or imaging devices, the system’s optimal balance shifts to require more human
oversight. This highlights the need for good certainty estimates to allow the AI
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to defer when it is uncertain. In principle, our framework can be extended to var-
ious reading strategies, including unblinded double reading. However, a proper
assessment of many strategies would require either prospective data involving
human decisions or a reliable simulation, which presents its own set of challenges.
Finally, we note that determining an optimal threshold (α) for model abstention
based on validation set data may not effectively translate to scenarios involv-
ing out-of-distribution (OoD) samples, highlighting the need to collect data to
calibrate the model to its new setting.
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