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Abstract. Transcranial Direct Current Stimulation (tDCS) is a non-
invasive brain stimulation method that applies neuromodulatory effects
to the brain via low-intensity, direct current. It has shown possible pos-
itive effects in areas such as depression, substance use disorder, anxi-
ety, and pain. Unfortunately, mixed trial results have delayed the field’s
progress. Electrical current field approximation provides a way for tDCS
researchers to estimate how an individual will respond to specific tDCS
parameters. Publicly available physics-based stimulators have led to much
progress; however, they can be error-prone, susceptible to quality issues
(e.g., poor segmentation), and take multiple hours to run. Digital func-
tional twins provide a method of estimating brain function in response
to stimuli using computational methods. We seek to implement this idea
for individualized tDCS. Hence, this work provides a proof-of-concept
for generating electrical field maps for tDCS directly from T1-weighted
magnetic resonance images (MRIs). Our deep learning method employs
special loss regularizations to improve the model’s generalizability and
calibration across individual scans and electrode montages. Users may
enter a desired electrode montage in addition to the unique MRI for a
custom output. Our dataset includes 442 unique individual heads from
individuals across the adult lifespan. The pipeline can generate results
on the scale of minutes, unlike physics-based systems that can take 1-3
hours. Overall, our methods will help streamline the process of individual
current dose estimations for improved tDCS interventions.
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1 Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimu-
lation (NIBS) method that applies very weak direct current to the scalp [18].
Its primary mechanism of action is thought to be influencing cortical excitabil-
ity by enacting changes on neuronal membrane potentials [18].Thus, tDCS is
considered to be a neuromodulatory technique [24]. tDCS may have efficacy
for interventions in ailments such as fibromyalgia, depression, anxiety, substance
use disorder, stroke, Alzheimer’s Disease, and pain [4,6,16,17,21]. This interven-
tion is low-risk and cheap under conventional protocols [2]. Thus, its application
paired with behavioral training is appealing compared to pharmaceuticals or
invasive procedures. The United States Food and Drug Administration has not
yet approved it for specific clinical indications [7]. Some other countries have
approved tDCS for specific uses such as depression treatment [7].

We hypothesize that the lack of wider clinical approval is likely in part due
to inconsistent findings across clinical research trials [10]. Conventional tDCS
applies a fixed current and electrode placement across participants. Due to this,
inconsistent findings may be partially attributed to individual factors that pro-
duce a variability in response profiles [3]. A significant source of variability derives
from inter-individual anatomical differences like brain atrophy, cortical folding
structures, skull thickness, and brain shape [1], [15]. These factors could cause
recipients of tDCS to have widely different response rates to the same stimulation
parameters. Therefore, this work begins to address this gap in tDCS research by
developing a pipeline to streamline customized treatment planning.

The current methods to customize simulation primarily apply input param-
eters to finite element methods to produce electric field maps [15]. These field
maps predict the electrical current dosages that reach the target treatment ar-
eas. Two physics-based simulators that are open access are SimNibs [20] and
ROAST [11]. These tools have greatly advanced NIBS research. Yet, they do
have some inherent disadvantages that could leave room for a deep learning op-
tion. For instance, simulation of one head at one set of stimulation parameters
can take 1-3 hours. This can be difficult when fast turnabout is desired. Also,
they may have dependencies that are not open access (e.g., ROAST on MAT-
LAB). One previous paper demonstrated that using deep learning to generate
electrical current maps for tDCS is possible [14]. This previous work, dubbed
DeeptDCS, constructed an AttentionUNet network to generate electrical cur-
rent maps from volume conductor models (VCMs). Their VCMs are generated
using HEADRECO from SimNibs [20], whereas they superimpose a given elec-
trode montage conductivity to give electrode context. Their dataset consists of 85
magnetic resonance images (MRIs) and 5 electrode montages. The study showed
that deep learning can generate successful electrical current maps for tDCS.

Functional digital twins in neurology are computational systems that can pre-
dict brain functional changes in response to some stimuli [25]. These tools are
increasingly promising with advances in artificial intelligence. We apply this idea
to improve the capacity for clinical research to model tDCS parameters based
on patient-wise digital twins. The current work is a significant innovation by



Functional digital twins of tDCS 3

building a nearly real-time digital twin of the individualized brain in tDCS stim-
ulation, without relying on additional tools. We incorporate a much larger scale
dataset in terms of individual heads (n = 442). Our deep learning framework is
based on SwinUNETR to take advantage of the ability of transformers to learn
global spatial information [9]. Furthermore, we design special loss regularizations
to improve the model’s generalizability and calibration across individual scans
and electrode montages. Altogether, our approach is an important contribution
to creating a functional digital twin for individual response to tDCS interven-
tions. This pipeline can help clinical research trials determine optimal individual
tDCS parameters with speed, accuracy, and reliability.

2 Methodology

2.1 Dataset

Older Adult Dataset The older adult dataset is derived from a Phase III
clinical trial that assessed if tDCS could improve cognition when paired with
cognitive training. Specifically, our subset contains T1-weighted MRI data from
240 participants. Structural T1-MRIs were collected from two different scanner
types depending on location. The main trial location used a 3-Tesla Siemens
Magnetom Prisma scanner with a 64-channel head coil, whereas the secondary
site used a 3-Tesla Siemens Magnetom Skyra scanner with a 32-channel head coil.
Both locations used the following MPRAGE sequence parameters: repetition
time = 1800 ms; echo time = 2.26 ms; flip angle = 8°; field of view = 256 × 256
× 256 mm; voxel size = 1 mm3. All participants were cognitively healthy older
adults that were between 65-89 years old at the time of the trial. Both sites’
Institutional Review Boards approved the trial. Informed consent was obtained
for all participants. This study obtained the permission to use the trial data.

Younger Adult Dataset The younger adult dataset is obtained from the
1200 Subject Release (S1200) from the Human Connectome Project’s (HCP)
Young Adult study. The latest 2017 release includes behavioral and 3T MRI
data from 1,206 healthy young adult participants ages 22-35 that were collected
between August 2012 - October 2015. HCP employs a protocol that is based
on a customized Siemens 3T scanner called “Connectome Skyra” that is housed
at Washington University in St. Louis [8]. The voxel size is given as 0.7 mm
isotropic. Field of view = 260 × 311 × 260 mm. All other details are provided
in their reference material [12].

2.2 Data Preparation

Reference Electrical Field Maps This work employs ROAST [11] to gen-
erate the reference electrical field maps. All standard settings for ROAST were
applied other than changes in the electrode montage. We started with two com-
mon montages F3-F4 and C3-Fp2 based on previous works in tDCS research [13].
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The current work started with two montages due to the time and computational
resources to generate data for 470 unique MRI inputs. Follow-up work will in-
corporate more montages. The input current was 2 mA in amplitude. The start-
ing dataset size encompassed three-dimensional (3D) volumetric T1-MRIs from
240 older adult participants and 230 younger adult participants. ROAST had a
higher fail rate in the younger adult data, which caused the final dataset size to
be about 52% older adults and 48% younger adults. The total effective data size
for deep learning included 442 unique MRIs and 884 unique data pairs.

Preprocessing All images undergo preprocessing solely using Medical Open
Network for Artificial Intelligence (MONAI) [5] transformations so that the final
model can work on inference MRIs without other software dependencies. MONAI
is an open-source framework written in Pytorch to help optimize deep learning
for healthcare imaging. As such, it comes with optimized frameworks for image
preprocessing, deep learning, and evaluation. Our preprocessing normalizes all
MRI voxels between 0-1, crops images into 128 × 128 × 128 inputs, and performs
augmentation on the training data. The training data has random data flips
and intensity shifts both at a probability of 0.1. The validation and testing are
evaluated over the entire image inputs using 128 × 128 × 128 windows using
a sliding window function. The training data, validation data, and testing data
encompass 708 volumes, 88 volumes, and 88 volumes, respectively. The ratio of
older adults and younger adults is preserved at 52% vs. 48% in the split datasets.

2.3 Model Architecture

This work employs a dual learning scheme with regression and classification
models that train simultaneously (see Fig. 1). In this approach, the regression
model is the main model that generates the electrical field maps as outputs. The
purpose of the classification model is to serve as an additional regularization
for the regression output. It performs this task by classifying the output maps
according to electrode montage type.

Regression Model The regression network performs image-to-image transla-
tion from a 3D MRI input to a 3D electrical field map output. In addition,
the network is modified to input a vector that corresponds to a user’s choice
for the electrode montage that is used to produce the electrical field maps.
SwinUNETR [9] was employed as the basic model architecture. SwinUNETR
is based on the principal of combining the advantages of U-Net with those of
transformer modules. The U-Net architecture has achieved state-of-the-art per-
formance across many medical imaging tasks [19]. Even so, convolutional neural
networks (CNNs) lack some ability to model global information due to the lim-
ited size of convolution kernels. Hence, the transformer modules are employed to
compensate. Transformer modules have achieved increasingly high performances
in natural language processing due to their attention mechanisms [23]. Like UN-
ETR, SwinUNETR employs a transformer encoder and CNN decoder together
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Fig. 1. Method Pipeline.

in a U-Net like structure. SwinUNETR improves UNETR by adding encoder
feature extraction at five different resolutions using shifting windows.

Classification Model An additional model classifies the regression outputs
into the different electrode montages. This regularizes the regression model to
help further differentiate the electrical field maps that result from the same
T1-weighted MRI. This work implements a custom EfficientNet [22] as the clas-
sification model. EfficientNet was originally designed to improve accuracy while
conserving computational resources. It accomplishes this with a special model
scaling scheme that balances network depth, width, and resolution. The design
uses a mobile inverted bottleneck convolutional block that integrates squeeze-
and-excitation blocks, depthwise separable convolutions, and inverted residuals.

2.4 Loss Function

The loss function (Eq. 1) contains three components to balance electrical field
map accuracy, sensitivity to electrode montage type, and calibration.

L = α×MAE(y, ŷ) + β × CrossEntropy(v, v̂) + γ × ECE(y, ŷ) (1)

where y is the output electrical field map, ŷ is the reference electrical field map,
v is the output electrode montage class, and v̂ is the true electrode montage
class, and MAE is the Mean Absolute Error. ECE is the expected calibration
error (Eq. 2), except we modified the standard equation for ECE to handle re-
gression problems. Our modified equation takes the residual differences between
the predicted and target values, then it bins them according to the ranges of
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the predicted values. α, β, and γ are weighting terms. We use a simple grid
search to establish the best weightings for each loss. The present dataset led to
optimal weightings of α = 1.0, β = 0.5, and γ = 0.5. The entire loss function is
backpropagated across both the regression and classification networks.

ECE =
M∑
i=1

|Bini|
N

× |ai − ci| (2)

Eq. 2 shows the standard equation for ECE. Confidence values are binned into
M bins in which Bini represents the current bin. ai is the current accuracy and
ci is the current confidence. For regression, we bin the prediction values and
measure the residual error as a measure of accuracy.

2.5 Implementation

The current implementation uses 1 NVIDIA A100 GPU, 4 CPUs, and 170 Gb
of RAM. The current training time on 708 data and validating on 88 data takes
about 5 days of processing. The inference time for 88 testing data is less than
30 minutes, which is about 20 seconds per MRI. A batch size of 2 was used for
training and validation. The model is trained with an AdamW optimizer.

3 Results

This is the first work to create a functional digital twin of tDCS directly from
T1-weighted MRIs to electrical field maps, so there is no prior for comparison.
Thus, this section compares the results across different parameters within our
pipeline. The main evaluation metrics are Mean Absolute Error (MAE), Mean
Squared Error (MSE), Structural Similarity Index Measure (SSIM), and ECE.

Ablation over Loss Terms This section demonstrates the ablation test for
the three loss terms in Eq. 1. Here, LMAE = α × MAE(y, ŷ), LCE = β ×
CrossEntropy(v, v̂), and LECE = γ×ECE(y, ŷ). Table 1 shows the results with
different loss parameters. All other aspects of training, validation, and testing are
held constant. Interestingly, table 1 shows that the highest performing algorithm
is either the LMAE model or the full loss model. Both of these models are fairly
close for MAE and MSE, but the full model does much better for SSIM and
ECE. The LMAE + LCE model noticeably struggles with ECE, which makes
sense since LECE loss is a modified ECE term for regression. However, it is
interesting that the ECE is much worse for LMAE + LCE compared to LMAE .
The LMAE +LECE model is better than the LMAE module for ECE but worse
than the full model. Fig. 2 shows the visual results for this experiment. The full
model is better than the other models at capturing the correct current values
in the front of the brain and at capturing detail in the back of the brain. The
LMAE+LCE model gets the brain details correct; however, the electrical current
values are predicted to be so significantly smaller than the reference that it is
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Fig. 2. Ablation test of varying loss on one older adult data and the C3-Fp2 montage.

Table 1. The performance of the ablation test for different loss configurations.

Method MAE MSE SSIM ECE
LMAE 0.03702 0.02727 0.6658 0.05172

LMAE + LCE 0.04272 0.03779 0.7215 1.062
LMAE + LECE 0.04790 0.03049 0.6078 0.04980

LMAE + LCE + LECE 0.03836 0.02754 0.7275 0.04823

hard to tell. The LMAE +LECE model is very noisy and includes critical errors
like the electrical current in the back of the scalp area. The LMAE model does
indeed look the second best after the full model.

Comparison of Results across Age Cohorts Table 2 supports that the
pipeline does significantly better on older adult data across all metrics. Fig.
3 displays example visual examples from both cohorts. The visual quality be-
tween cohorts does not seem to be as wide of a difference as the quantitative
differences. Both samples capture the electrical current intensities the most ac-
curately close to the front of the brain. The older adult sample does better at
maintaining correct higher current intensities, especially in areas like the cere-
brospinal fluid. The largest issue in this sample is that the current within the
eye is overestimated. In comparison, the younger adult data correctly keeps the
eye current low. However, it struggles more with underestimating the current
dosage. This observation is especially true in the bottom of the brain. Interest-
ingly, the younger adult reference seems to have a two slight noise issues in the
back of the brain. The younger adult result tries to capture one of them, but it
correctly misses the other. It is not clear if the different struggles between the
two cohorts are due to the age range or the differences between MRI acquisition,
but both of these issues are important challenges for deep learning algorithms
to address before implementation.
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Table 2. The performance of our method on older adults versus younger adults.

Method MAE MSE SSIM ECE
Older Adult Cohort 0.02408 0.01885 0.8208 0.02821

HCP Cohort 0.05401 0.03706 0.6254 0.07017

  Older Adult Reference    Older Adult Result            Younger Adult Reference                   Younger Adult Result

Fig. 3. Visual Samples on the HCP younger adult data and the older adult data. The
F3-F4 montage is used in both.

4 Conclusions

To the best of our knowledge, this is the first work to generate electrical field
simulation maps for tDCS directly from MRIs. This task is very challenging
because it requires the network to capture both the brain structure and current
doses. Another unique challenge is that electrical current values are very small.

Due to these challenges, the results still have room to improve before clini-
cal implementation. Future work will examine larger changes to the regression
network to fit this unique problem better. In addition, there is a discrepancy in
the results from older and younger adult brains. One difference is that the older
group are individuals who are at risk of age-related cognitive decline. A future ex-
periment could use cognitive scores to match participants across age as possible.
Another possibility is differences in scanner types. Training an HCP-only model
with older and younger adult data could help rule out this possibility. These
results could help narrow the factors that caused the performance difference.

Another limitation was that the results for direct electrical current map gen-
eration from MRIs were not yet equal to those that incorporated information
like volume conductor models. Such prior results still required traditional com-
putational modeling . The previous work was essential for tDCS research, but
it cannot be used on its own. Incorporating conductivity data will address this
issue without using external pipelines. We will still solely rely on MRI. The
future pipeline will perform automatic segmentation, then the MRIs and the
segmentations will both be used to generate electrical field maps.

A final future direction will be to validate the electrical current maps for
their utility in clinical trials. The generated results will be used to predict tDCS
response, and an exhaustive search will iterate through all possible tDCS pa-
rameters until positive intervention is predicted. Such experiments will incorpo-
rate more parameter combinations than the current work. The current proof-of-
concept will be helpful in validating our approach for this future validation.
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Overall, the current work takes important steps in achieving the goal of rapid
and accurate individual modeling in tDCS using deep learning. The current study
serves as an important proof-of-concept for these future works. One advantage
of the current work is that it incorporates data from 442 individuals across
younger and older adult data so that the modeling is robust to individual and
age. This dataset is the largest for modeling electrical field maps by the number of
unique individuals MRIs. Our pipeline enables users to input a desired electrode
montage along with the T1. The inference time on a new T1-weighted MRI
only takes 1-2 minutes, compared to physics-based simulators that can take 1-3
hours. Altogether, our method will pave the path toward individualized digital
functional twins for non-invasive brain stimulation.
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