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Abstract. We present HUP-3D, a 3D multiview multimodal synthetic
dataset for hand ultrasound (US) probe pose estimation in the context of
obstetric ultrasound. Egocentric markerless 3D joint pose estimation has
potential applications in mixed reality medical education. The ability to
understand hand and probe movements opens the door to tailored guid-
ance and mentoring applications. Our dataset consists of over 31k sets
of RGB, depth, and segmentation mask frames, including pose-related
reference data, with an emphasis on image diversity and complexity.
Adopting a camera viewpoint-based sphere concept allows us to cap-
ture a variety of views and generate multiple hand grasps poses using
a pre-trained network. Additionally, our approach includes a software-
based image rendering concept, enhancing diversity with various hand
and arm textures, lighting conditions, and background images. We vali-
dated our proposed dataset with state-of-the-art learning models and we
obtained the lowest hand-object keypoint errors. The supplementary ma-
terial details the parameters for sphere-based camera view angles and the
grasp generation and rendering pipeline configuration. The source code
for our grasp generation and rendering pipeline, along with the dataset,
is publicly available at https://manuelbirlo.github.io/HUP-3D/.

Keywords: Egocentric 3D joint hand and tool pose estimation · Syn-
thetic datasets · Obstetrics ultrasound.

1 Introduction

The ability to infer hand and tool pose information from video data in clinical
setups opens the door to several potentially useful applications aimed at assisting
clinicians through context-specific evaluation of their movement. Novel methods
focusing on marker-free video-based clinical skill assessment have been proposed
such as surgical hand and tool pose estimation [24], surgical tool movement anal-
ysis [25] and skill assessment in robotic surgery [26]. Accurate estimation of hand
and tool pose can enhance the precision and effectiveness of ultrasound proce-
dures, leading to improved diagnostic outcomes and training methodologies.

https://manuelbirlo.github.io/HUP-3D/
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Solutions for skill assessment that rely on physical motion sensors have been
developed in fields such as hand motion analysis for endovascular procedures [24]
and guidance for using ultrasound (US) probes in obstetrics [25]. With the emerg-
ing trend of mixed reality head-mounted displays, dominated by the Microsoft
HoloLens 2 1, egocentric pose estimation methods arise, such as probe tracking
for US-guided procedures [27].

In the context of obstetric US, we explore 3D joint hand-tool pose estima-
tion with applications in mixed reality-based medical education, where analysis
of hand and probe movements could facilitate holographic assistive guidance.
Such innovations aim to help standardize clinical training protocols. Standard-
ized target scanning planes are used for training but there is a lack of universally
accepted competence measures [18]. By distinguishing between novice and ex-
pert clinician movements, machine learning-based pose estimation is a powerful
tool for developing standardized training approaches. This technique supports
established clinical practices to estimate fetal development through biometry. It
offers a pathway to more uniform and effective clinical training [17].

Image datasets required for machine learning-based model training and sub-
sequent pose estimation can be categorized into real and synthetic images. Real
dataset generating methods often employ marker-free methods to capture hand
grasp information directly from image data [6,7,8,9,10]. Although real images of-
fer the advantage of authentic context [10,13], they pose challenges in generating
accurate ground truth due to the labor-intensive nature of manual annotations
and potential biases from sensor use [7]. Marker-free approaches, by avoiding
markers on the tool and/or hand, mitigate the risk of pose prediction bias, mak-
ing them a popular choice for reducing inaccuracies associated with additional
visible sensors or markers [8,7].

Synthetic images, however, offer built-in ground truth from 3D models, simu-
lating realistic grasping scenarios with the benefits of easy scalability and gener-
alizability to real images [6]. Furthermore, synthetic ground truth proves useful
for addressing mutual occlusions resulting from hand-tool interactions.

When creating training images for pose estimation, it is crucial to account
for the dataset’s generalizability, particularly the expected camera location and
range of viewpoints. Applications vary, with some utilizing non-egocentric views
for capturing hand grasps [6,10]. Mixed and augmented reality setups using head-
mounted devices like the Microsoft HoloLens 2, require consideration of egocen-
tric perspectives for pose estimation from device-recorded camera data [7,8].

When capturing clinical instruments such as US probes in synthetic images,
the realism of hand grasps is constrained by specific hand-tool contact areas
and orientations. This requirement, previously noted in the context of orthope-
dic surgical tools such as drills [7] and other instruments such as scalpels and
diskplacers [8], poses a challenge. Traditional grasp generation techniques, like
those from robotic grasping software [14] and used in similar studies [6,7], en-
counter difficulties due to the specific dimensions and clinically relevant grasp po-
sitions of the US probe. Consequently, we employed more flexible solutions such

1 https://www.microsoft.com/en-us/hololens
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as a generative model for machine learning-based grasp generation [9], which has
been validated in clinical environments [8].

To increase image diversity for egocentric applications in a scalable way, we
broadened the approach to multi-view by allowing camera movement around a
sphere’s surface, centered on the hand. This method supports both egocentric
distances and a mix of egocentric and non-egocentric viewpoints.

Our contributions can be summarized as follows:

– A scalable synthetic multi-modal (RGB-D, segmentation maps) image gener-
ation pipeline capable of producing a wide variety of realistic hand-ultrasound-
probe grasp frames, without prior external data recording

– A novel sphere-based camera viewpoint generation that enhances frame gen-
eralizability by combining egocentric head-hand distances with non-egocentric
camera viewpoints.

– HUP-3D: A diverse multimodal synthetic dataset tailored for joint 3D hand
and tool pose estimation, featuring the Voluson™ C1-5-D2 ultrasound probe
commonly used in obstetrics, including a variety of hand poses, textures,
backgrounds, lighting, and camera angles

– Lowest hand and object 3D pose estimation errors for a synthetic dataset
with a trained state-of-the-art model, HOPE-net [30].

2 Method

We focus on potential medical education applications in the context of US ob-
stetrics, but maintain a high degree of flexibility toward other use cases. Our
synthetic image generation pipeline is split into two sections: grasp generation
and grasp rendering. These are described in the following subsections. A graph-
ical overview of our pipeline is shown in Fig. 1.

2.1 Grasp generation

To achieve automated annotation we adopted a strategy focused on generating
synthetic grasp images, avoiding the complexities associated with annotating real
images. This approach allowed us to maintain a clear and manageable rendering
workflow. The underlying motivation in pursuing a purely synthetic image gener-
ation approach is to explore the possibility of creating a sufficiently large variety
of training images to allow generalizability to real images for joint 3D hand
and tool pose prediction. Our initial feasibility study incorporated the use of a
robotic grasping tool [14] which turned out to be error-prone in our application
and did not produce a sufficiently large variety of plausible hand grasps due to
restrictions in terms of hand dexterity. We then adapted the generative model
proposed in [9] for joint 3D grasp generation to a more clinical scenario. Our
grasp generation process employs two sequential networks based on the MANO
hand model [28]: an encoder-decoder network that generates initial coarse hand
2 https://services.gehealthcare.com/gehcstorefront/p/5499513
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Fig. 1: Grasp Generation (blue) and Rendering Pipeline (red): The process begins
with a MANO hand model initialization and a BPS-encoded Voluson model point
cloud. CoarseNet generates initial hand poses, further refined by RefineNet for
precise hand-probe alignment. In the rendering phase, the optimized hand pose,
model vertices, and a SMPL-H model are processed in Blender. Using a multi-
viewpoint camera via a spherical layout and centered on the hand and arm,
several textures and backgrounds are applied for diverse RGB-D, segmentation
maps, and annotations.

poses and a subsequent neural network dedicated to fine-tuning these poses,
specifically enhancing accuracy in hand-tool interaction regions. The encoder,
which samples from a normal distributed 16-dimensional latent space, requires
encoded point cloud representations [19] of the probe model (ΩBPS), together
with the MANO right-hand model’s initial translation γ ∈ R3 and hand wrist
orientation θwrist ∈ R3. Defined Euler angles ΘV ol for probe meshes ΩBPS were
used for precise grasp pose control. Originally, the model described in [9] was
trained with ordinary objects (like mugs, cameras etc.). However, we extended
its capability to include the Voluson US probe. The decoder outputs an initial
hand pose [γ, θfull_pose], which is subsequently refined through a neural network
utilizing the vertices of the probe model ΩV ert and the vertex distances ∆hand

obj

between hand and probe. This refined pose, expressed as Ψ := [γ∗∗, θfull_pose],
forms the foundation for our grasp rendering approach detailed in Sec. 2.2.

2 https://www.meshlab.net/
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(a) (b)

Fig. 2: (a) Schematic grasp conversion from generative model to rendering soft-
ware, including probe offset (∆z) correction. (b) Grasp rendering overview: (1)
SMPL-H body model grasping the probe, showing egocentric and non-egocentric
views. (2) Right arm and sphere-based camera orientations with remaining
SMPL-H body parts hidden. (3) Camera angle sphere concept with views at
various latitudes, centered on hand mesh; defines sphere (rsphr) and circle (rcirc)
radii. (4) Rendered hand-probe scene example from a sphere camera position.

2.2 Grasp rendering

Using Blender, an open source 3D graphics software [15] for grasp rendering,
as demonstrated in [6,7], we tailored our rendering pipeline to accommodate the
grasp poses Ψ produced by the generative model outlined in Sec. 2.1. Addition-
ally, this rendering approach incorporates a SMPL-H body model [16], a MANO
right hand model MV ert, and the probe model’s vertex data ΩV ert. The grasp
rendering pipeline can be seen in the lower part of Fig. 1. A calibration step is
needed, either pre-rendering or pre-grasp generation, to correct small differences
between the probe model’s world coordinate representation from grasp genera-
tion and rendering. We position the probe at the origin of the rendering software’s
world coordinate system, but the modified hand grasp pose Ψ necessitates an
offset ∆z along the positive z-axis, which was calculated through polygon offset
analysis. We adjust the translation offset of the probe by γ∆

ω = γω +(0, 0,−∆z).
Fig. 2(a) illustrates this correction.

To enhance the diversity of camera perspectives, we transitioned from the
purely egocentric viewpoint strategy to the sphere-based methodology outlined
in Sec. 2.2, illustrated in Figs. 1 and 2(b). This provides challenging examples
such as mutual occlusions between hands and tools, improving the generalizabil-
ity of the resulting pose estimation model.

For each grasp produced by our module, we generate a synthetic image for
each camera view angle Θk ∈ {Θ1, . . . , ΘN}, covering N positions around the
sphere. Our rendering scene setup uses two shades of clinical gloves, varied scene
lighting, and eight backgrounds (a lab with a SPACE-FAN ultrasound fetus



6 M. Birlo et al.

Fig. 3: Sample frames from the HUP-3D dataset, grouped columnwise, from left
to right: RGB, depth, segmentation map, and ground truth annotations.

model3, consultation rooms, a white background, and real abdomens of preg-
nant women). The rendering model outputs a comprehensive set of images for
each grasp, including RGB-D and segmentation maps, as well as ground truth
annotations. Sample frames from the HUP-3D dataset are shown in Fig. 3.

Camera view angle sphere concept Our methodology diverges from tradi-
tional egocentric viewpoints by implementing a sphere-based camera view setup
to capture both egocentric and non-egocentric images, enhancing dataset diver-
sity. This method, inspired by [3], involves distributing camera positions around
a sphere, creating a varied perspective landscape around the right hand. The
sphere is divided into horizontal segments, determined by latitude angles, to
evenly distribute viewpoints. Specifically, the number of latitude segments Nϕ

and circles per segment N
(i)
circ are calculated to ensure comprehensive coverage:

Nϕ =

 π

2 arcsin
(

rcirc
rsph

)
 , N

(i)
circ =

⌊
πrsph sin(θi)

rcirc

⌋
, i ∈ {1, 2, . . . , Nϕ} (1)

The division of the sphere into latitude floors was chosen to control camera
placement and minimize frame redundancy, rather than to achieve perfect circle
uniformity. The number of circles is determined in relation to the sphere’s radius
rsph and the circle’s radius rcirc. The circles are placed sinusoidally from the top
to the bottom of the sphere. For each segment i and each circle j within, camera
locations are defined by their spherical coordinates (θi, ϕ

(i)
j ), ensuring a near-

uniform spread of angles:

(θi, ϕ
(i)
j ) with ϕ

(i)
j = j · 2π

N
(i)
circ

, j ∈ {0, 1, . . . , N (i)
circ − 1} (2)

3 https://www.kyotokagaku.com/en/products_data/us-7_en/
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This structured approach facilitates the generation of camera angles Θk, utilized
in our subsequent rendering process. Figs. 1 and 2b visually demonstrate this
concept, showcasing the strategic camera placement and the diverse grasp views
it enables.

Dataset comparison In Table 1, we enlist the top clinical and non-clinical
datasets, together with their properties. HUP-3D is the largest multi-view dataset
for clinical applications, presenting 3 possible modalities, RGB-DS (color, depth
and segmentation maps). Only POV-Surgery [8] contains a higher number, but
with less samples per tool (29k) and just firs-person view.

Dataset # frames Source
(Real/ Synth)

Viewpoints
(Single/Multi/Ego) Annotations Modalities Clinical

(no. of tools)
HO-3D [10] 77.5k Real Single automatic RGB -
ObMan [6] 153k Synth Multi automatic RGB-DS -

ContactPose [11] 2.9M Real Multi semi-automatic RGB-D -
Hein et al. [7] 10.5k Synth Ego automatic RGB-DS 1

POV-Surgery [8] 88k Synth Ego automatic RGB-DS 3
HUP-3D (ours) 31680 Synth Multi automatic RGB-DS 1

Table 1: Dataset comparison: HUP-3D outstands as the first multi-view 3D hand-
(clinical)object dataset.

3 Experiment

To support the utility of our proposed dataset HUP-3D, we deploy a deep learn-
ing (DL) state-of-the-art model designed for other datasets like HO-3D [10]. As
mentioned before, our dataset consists of 31,680 image sets from 11 realistic
hand-object grasps. In a supervised learning setting, we further split the data
as 7 grasps for training (20,160), 2 grasps for validation, and 2 more for testing
(5,760). This will ensure the generalizability of the tested DL model.

3.1 3D hand-probe pose estimation

There have been extensive DL methods proposed for 3D hand-object pose esti-
mation in the computer vision community. One of these competitive baselines is
HOPE-net [30], originally tested on real data. HOPE-net extends the capabili-
ties of residual convolutional neural networks [29] with an adaptive Graph U-Net
module [31]. This module manages to reduce the highly non-linear regression of
the 3D hand and object coordinates.

The task of the estimator is to map the RGB images to 3D world coordinates
of the hand skeleton and the object’s boundary corners. For this, we minimize a
mean square error loss during training on both 2D and 3D coordinates. In terms
of training, we follow the same settings as in the original HOPE-net paper [30].
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Quantitatively, once trained, we measure the error in millimeters between the
predicted joints and the ground truth. In the test set, we obtain a total error of
8.65 mm as the mean per joint position error (MPJPE) with 5.33 mm from the
hand and 17.05 mm from the object. The testing error is the lowest compared to
other clinical data sets such as POV-Surgery [8] (14.35 mm) and Hein et al. [7]
(17.02 mm) where even more advanced DL models were used. This proves that a
multi-viewpoint dataset helps to estimate the object and the hand location with
higher precision. In our experiments, we have also tested a more simple baseline
composed just of ResNet-50 [29], where the error was higher at 9.69 mm. In Fig.
4, we visually confirm the accurate predicted keypoints of our HUP-3D test set.

Fig. 4: Qualitative results, shown with 4 test images from HUP-3D: image
columns from left to right: RGB, predicted hand joints, predicted probe cor-
ners, predicted joints and corners, ground truth of joints and corners

4 Conclusion and future work

We introduce HUP-3D, a pioneering 3D hand-object multi-view dataset tailored
for obstetric hand US probe grasps. HUP-3D aims to enhance research in clini-
cal movement analysis via egocentric camera and mixed reality applications. Our
data generation process leverages a versatile model for grasp generation and an
efficient automated rendering pipeline, illustrating the benefits of our multi-view
camera sphere approach. A baseline model evaluation confirmed our method’s ef-
fectiveness, even with significant hand-probe occlusions. Future efforts will focus
on improving real-world applicability by incorporating automatically annotated
real images and developing more sophisticated grasp generation techniques that
incorporate temporal sequences for better manual interaction and predictions.
We hope that the current dataset will facilitate rapid advances in hand and tool
pose estimation in obstetric ultrasound.
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