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Abstract. In this work, we present a novel approach to calibrate seg-
mentation networks that considers the inherent challenges posed by dif-
ferent categories and object regions. In particular, we present a formu-
lation that integrates class and region-wise constraints into the learning
objective, with multiple penalty weights to account for class and re-
gion differences. Finding the optimal penalty weights manually, however,
might be unfeasible, and potentially hinder the optimization process. To
overcome this limitation, we propose an approach based on Class and
Region-Adaptive constraints (CRaC), which allows to learn the class
and region-wise penalty weights during training. CRaC is based on a
general Augmented Lagrangian method, a well-established technique in
constrained optimization. Experimental results on two popular segmen-
tation benchmarks, and two well-known segmentation networks, demon-
strate the superiority of CRaC compared to existing approaches. The
code is available at: https://github.com/Bala93/CRac/
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1 Introduction

Despite the remarkable progress achieved by deep neural networks (DNNs), they
are susceptible to suffer from miscalibration, leading to overconfident predictions
[7,19], even when they are incorrect. This issue becomes especially significant in
safety-critical scenarios, such as medical diagnosis or treatment, where producing
accurate uncertainty estimates is of paramount importance. An inherent cause
of network miscalibration is known to be the implicit bias for low-entropy pre-
dictions caused by popular supervised losses, such as the cross-entropy, which
encourages large differences between the logit of the ground truth category and
the remaining classes [20].

A myriad of approaches have emerged to mitigate network miscalibration,
which mainly focus on either post-processing strategies or integrating additional
learning objectives during training. The first family of approaches, i.e., post-
processing methods, offers a simple alternative for modifying the softmax predic-
tions in a post-hoc fashion by establishing a mapping from raw network outputs
to well-calibrated confidences [5,7,8,34,35]. The second category involves incorpo-
rating additional regularization during training, typically penalizing low-entropy
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predictions. For example, [28] introduced an explicit term that maximizes the
Shannon entropy of the network predictions during training, which was later
extended in [13] by penalizing low-entropy distributions only in incorrect pre-
dictions. Furthermore, popular losses for classification, such as Label smoothing
[32] or focal loss [14], implicitly integrate an entropy maximization term, which
has a favourable effect on calibration [20,21]. More recently, [15,16,23] propose to
enforce inequality constraints on the logit space, allowing to control the margin
on logit distances, ultimately reducing overconfidence in the predictions. This
provided more flexibility than systematically maximizing the entropy of the pre-
dictions, as in [20,21], which results in gradients that continually push towards
a non-informative solutions. Other works include the integration of pair-wise
constraints between classes [4] or augmenting the training dataset by convex
combinations of random pairs of images and their associated labels, e.g., MixUp
[33]. Nevertheless, even though these works have achieved remarkable progress in
addressing miscalibration in both classification [4,7,8,20,21,28,34] and segmen-
tation tasks [5,13,15,23], they disregard neighbour pixel relationships, in terms
of classes, which is of significant relevance in semantic image segmentation.

Certainly, one of the factors contributing to the reduced performance of these
losses in segmentation tasks arises from the uniform, or near-to-uniform, distri-
bution enforced in the network predictions (whether logit or softmax predic-
tions), which neglects the spatial context [22]. To overcome this issue, and to
integrate class-wise information of the surrounding pixels during training, Spa-
tially Varying Label Smoothing (SVLS) [10] introduced a label smoothing strat-
egy that captures the structural uncertainty required in semantic segmentation.
More specifically, SVLS uses a Gaussian kernel applied across the one-hot en-
coded ground truth, leading to class probabilities based on a soft combination
of neighboring pixels. As exposed in [22,24], SVLS integrates an implicit penalty
on softmax predictions, which enforces a prior based on soft class proportions
of surrounding pixels. This strategy, however, lacks a mechanism to control the
influence of the constraint over the main objective, potentially hindering the
optimization process. To circumvent this limitation, authors presented a sim-
ple solution that combines the standard cross-entropy with an explicit penalty,
where both the prior and its impact can be easily controlled.

Although the work proposed in [22,24] achieves greater calibration perfor-
mance than existing alternatives, and integrates class-relationships across a pixel
and its neighbours, it presents two major limitations: 1) The scalar balancing
weight that controls the importance of the penalty is equal for all classes, and for
all the regions. This scenario is suboptimal, as it can hamper the network perfor-
mance when some classes are more challenging to segment, or under-represented.
Furthermore, this strategy considers than the weight of the penalty should be
the same for a pixel inside the object (likely to have low uncertainty) than for
a pixel within the organ boundaries (likely to have high uncertainty). 2) The
value of the balancing weight is defined before network optimization, lacking
an adaptive strategy during training. For example, as the training evolves, the
cross-entropy loss pushes towards lower-entropy predictions, whereas the penalty
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weight is the same at the beginning and the end of the training. Based on these
findings, we can summarize our contributions as:

1. We propose a class and region-adaptive constraint approach to tackle the
miscalibration issue in semantic segmentation models. In particular, we for-
mulate a solution that considers the specificities of each category and dif-
ferent regions by introducing independent class and region-wise penalty
weights. This contrasts with the prior work in [22], where a uniform scalar
penalty weight is employed, regardless of categories or regions.

2. Furthermore, we transfer the constrained problem to its dual unconstrained
optimization counterpart by using an Augmented Lagrangian method (ALM).
This alleviates the need for manually adjusting each penalty weight and al-
lows, through a series of iterative inner and outer steps, to find the optimal
value of each penalty weight, which can be learned in an adaptive manner.

3. Comprehensive experiments on two popular segmentation benchmarks, and
with two well-known segmentation backbones, demonstrate the superiority
of our approach over a set of relevant recent calibration approaches.

2 Methodology

Notation. We denote the training dataset as D(X ,Y) = {(x(n),y(n))}Nn=1,
where x(n) ∈ X ⊂ RΩn represents the nth image, Ωn its spatial image do-
main, and y(n) ∈ Y ⊂ RK the corresponding pixel-wise ground-truth annota-
tion with K classes, which is provided as a one-hot encoding vector. Given an
input image x(n), a neural network parameterized by θ generates a logit vec-
tor fθ(x

(n)) = l(n) ∈ RΩn×K , which can be converted into probability values
with the softmax operator, softmax(l(n)) = s(n) ∈ [0, 1]Ωn×K . To simplify the
notations, we omit sample indices, as this does not lead to any ambiguity.

2.1 Background

Despite its importance in dense prediction tasks, such as segmentation, very
few approaches consider pixel spatial relationships across classes to address the
miscalibration issue. Spatially Varying Label Smoothing (SVLS) [10] integrates
neighbour class information by softening the pixel label assignments with a dis-
crete spatial Gaussian kernel. More recently, NACL [22,24] formally showed that
SVLS actually enforces an implicit constraint on soft class proportions of sur-
rounding pixels, and propose the following constrained optimization problem:

min
θ

LCE s.t. τ = l, (1)

which can be approximated by incorporating an explicit penalty, whose overall
learning objective is defined as:

min
θ

∑
i∈Ω

∑
k∈K

(−y
(i)
k log(s

(i)
k ) + λ|τ (i)k − l

(i)
k |). (2)
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The first term in the above equation is the standard cross-entropy loss on a given
pixel, the second term is a linear penalty over the pixel logit distributions, τ is a
prior, and λ the balancing hyperparameter that controls the importance of each
term. With this objective, when the constraint |τk − lk| deviates from 0 (i.e., τk
and lk are different) the value of the penalty term increases. Thus, as the prior
τ = {τ0, ..., τK−1} captures the class distribution of a 2D patch1 surrounding
the pixel, the penalty enforces the predicted logit distribution l to follow τ .

2.2 Class and region-wise penalties

The unconstrained formulation presented in Equation 2 employs a single uniform
penalty. We argue that this scenario is suboptimal, as it disregards differences
across individual categories, or even different regions with different uncertainty
in the target object, which may pose distinct inherent learning challenges. For
example, annotations from a patch in the center of an organ typically have less
uncertainty that labels in within the organ boundaries. A better, and more op-
timal strategy would integrate multiple penalty weights λ, one for each category
and type of patch/region, leading to a set of penalty weights Λ ∈ RK×R

+ , with
R being the number of regions. For simplicity, in this work we will consider only
two types of regions (i.e., R = 2, leading to Λ = {λ0,λ1}), that we denote as
inner and outer regions, and whose sets are defined as I and O, respectively.
More concretely, if the surrounding ground truth patch of a given pixel only con-
tains one category, it will be considered as an inner patch, whereas otherwise it
will be an outer patch. Thus, we can formally define our formulation as:

min
θ

∑
i∈Ω

H(y(i), s(i)) +
∑
i∈I

∑
k∈K

λk,0|τ (i)k − l
(i)
k |+

∑
i∈O

∑
k∈K

λk,1|τ (i)k − l
(i)
k |, (3)

where H(y, s) is the standard cross-entropy loss. As stated in prior literature
in constrained convolutional neural networks [18,30,16,31], while Λ∗ ∈ RK×R

+

are the Lagrange multipliers of the presented problem, and Λ = Λ∗ could be
considered the best choice to solve (3), using Λ∗ as the penalty weights may not
feasible in practice. On the other hand, finding the optimal value for each penalty
weight manually can pose optimization challenges, particularly for datasets with
a large number of classes.

2.3 The proposed class and region adaptive solution

General Augmented Lagrangian. To alleviate the need of having to chose
the penalty weights Λ ∈ RK×R

+ , we propose to use an Augmented Lagrangian
Multiplier (ALM) method. ALM approaches are optimization techniques that
integrate penalties and primal-dual updates to efficiently tackle constrained op-
timization problems. These methods iteratively refine solutions by adjusting

1 More details about the priors and the enforced constraint in [22,24].
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penalty terms based on Lagrange multipliers, effectively balancing between sat-
isfying constraints, i.e., the penalties, and minimizing the main objective func-
tion, in our case the cross-entropy loss. ALM approaches are favoured due to
their ability to handle complex constraints and their robust performance across
various optimization scenarios, and enjoy widespread popularity in the general
context of optimization [2,27]. A general constrained optimization problem can
be formally defined as:

min
x

g(x) s.t. hi(x) ≤ 0, i = 1, . . . , n (4)

with g : Rd → R the objective function and hi : Rd → R, i = 1, . . . , n being
the set of constraint functions. Generally, this problem is tackled by solving a
succession of j ∈ N unconstrained problems, each solved approximately w.r.t x:

min
x,λ

L(j)(x) = g(x) +
n∑

i=1

P (hi(x), ρ
(j)
i , λ

(j)
i ), (5)

where P : R×R++×R++ → R is a penalty-Lagrangian function, whose derivative
w.r.t. its first variable P ′(z, ρ, λ) ≡ ∂

∂zP (z, ρ, λ) exists, is positive and continuous

for all z ∈ R and (ρ, λ) ∈ (R++)
2. In addition, we denote ρ(j) = (ρ

(j)
i )1≤i≤n ∈

Rn
++ and λ(j) = (λ

(j)
i )1≤i≤n ∈ Rn

++ as the penalty parameters and multipliers
associated to the penalty P at the iteration j. We detail in the Appendix the set
of axioms that any penalty function P must satisfy [3].

The ALM can be split into two iterations. First, in the outer iterations, which
indexed by j, the penalty multipliers λ and the penalty parameters ρ are updated.
Then, during the inner iterations, the objective L(j) (Eq. 5) is minimized using
the previous solution as initialization to this problem. Particularly, the penalty
multipliers λ(j) are updated to the derivative of P w.r.t. to the solution obtained
during the last inner step:

λ
(j+1)
i = P ′(hi(x), ρ

(j)
i , λ

(j)
i ). (6)

This approach increases the value of the penalty multipliers when the constraint
is violated, and decreases their value otherwise. Thus, integrating an ALM during
optimization enables an adaptive and learnable strategy to determine an optimal
value for the penalty weights.
Our global learning objective. Based on the benefits detailed above, we
propose to solve the problem in Eq. 3 by using an ALM approach. More con-
cretely, we reformulate this problem by integrating a penalty function P , which
is parameterized by (ρ,λ) ∈ RK

++ × RK
++:

min
θ,λ0,λ1

∑
i∈Ω

H(y(i), s(i)) +
∑
i∈I

∑
k∈K

P (τ
(i)
k − l

(i)
k , ρk,0, λk,0)

+
∑
i∈O

∑
k∈K

P (τ
(i)
k − l

(i)
k , ρk,1, λk,1). (7)
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To obtain an accurate estimate of the penalty multipliers at each epoch,
we compute the satisfaction of the constraint on the validation set, following
standard practices in machine learning. In this work, we consider that a single
training epoch approximately minimizes the loss function. Then, we compute
the average penalty multiplier on the validation set. This means that, after a
training epoch j, the penalty multipliers for all k = 0, ...,K − 1 and each region
r at epoch j + 1 can be computed as:

λ
(j+1)
k,r =

1

|Dval|
∑

(x,y)∈Dval

P ′
(
τk − lk, ρ

(j)
k,r, λ

(j)
k,r

)
. (8)

Furthermore, ρ is updated as:

ρ
(j+1)
k,r =

{
γρ

(j)
k,r |τ (i)k − l

(i)
k | > µ ∗ |τ (i)k − l

(i)
k |;

ρ
(j)
k,r otherwise,

(9)

where µ is a constant factor that determines the amount of the update. Last,
following prior works on ALM in the context of constrained CNNs [16,30,31], we
employ PHR as the penalty, which is defined as:

PHR(z, ρ, λ) =

{
λz + 1

2ρz
2 if λ+ ρz ≥ 0;

−λ2

2ρ otherwise.
(10)

3 Experiments

Datasets. Following the Neighbor Aware Calibration Loss (NACL) [22,24], we
use the ACDC and FLARE datasets with its setting. ACDC [1] contains 100
patient exams with cardiac MR volumes and their respective pixel-wise anno-
tations. We follow the standard practices on this dataset, and extract 2D slices
from the volumes, which are resized to 224×224. Furthermore, FLARE [17]
includes 360 volumes of multiple organs in abdominal CTs, together with their
corresponding segmentation masks, which are resampled to a common space and
cropped to 192×192×30.
Baselines. We compare to relevant calibration losses, as well as to state-of-
the-art methods for calibration in medical image segmentation: Focal Loss (FL)
[20], penalizing low-entropies (ECP) [28], Label smoothing (LS) [32], SVLS [10],
MbLS [15], NACL [22] and BWCR [11]. As segmentation backbones, we have
selected two well-known and popular networks, U-Net [29] and nnU-Net [9].
Implementation details. For most of the compared methods, we use the hy-
perparameters values reported in [22]: FL (γ = 3), LS (α = 0.1), ECP (λ = 0.1),
MbLS (λ = 0.1 and m = 10), SVLS (σ = 2) and NACL (λ = 0.1). Furthermore,
for BWCR, the impact of the logit consistency is controlled by λmin = 0.01, and
λmax = 1. Regarding the prior used in NACL and our method CRaC, we use
the one proposed in [22], defined as τk =

∑d
i=1

yki , and which is computed over
a 3×3 patch. We train all the models during 100 epochs, with ADAM [12] as
optimizer and a batch size fixed to 16. The learning rate is set to 10−3 for the
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Table 1: Quantitative performance. Discriminative (DSC ↑, HD ↓) and cali-
bration (ECE ↓, TACE ↓) metrics, using U-Net as segmentation backbone. The
best method is highlighted in bold, whereas the second best is underlined.

ACDC FLARE Friedman Final

DSC HD ECE TACE DSC HD ECE TACE Rank Rank

FL [14] (γ = 3) 0.620 7.30 0.153 0.224 0.834 6.65 0.053 0.145 7.88 8
ECP [28] (λ = 0.1) 0.782 4.44 0.130 0.151 0.860 5.30 0.037 0.134 5.38 7
LS [32] (α = 0.1) 0.809 3.30 0.083 0.093 0.860 5.33 0.055 0.050 4.88 4
SVLS IPMI’21 [10] 0.824 2.81 0.091 0.138 0.857 5.72 0.039 0.144 5.25 5
MbLS CVPR’22 [15] 0.827 2.99 0.103 0.081 0.836 5.75 0.046 0.041 5.25 5
NACL MICCAI’23 [22] 0.854 2.93 0.068 0.073 0.868 5.12 0.033 0.031 2.25 2
BWCR MICCAI’23 [11] 0.841 2.69 0.051 0.075 0.848 5.39 0.029 0.059 3.13 3
CRaC (Ours) 0.877 1.72 0.057 0.058 0.876 5.52 0.029 0.033 1.75 1

Table 2: Quantitative performance. Discriminative (DSC ↑, HD ↓) and cal-
ibration (ECE ↓, TACE ↓) using nnU-Net [9] as segmentation backbone. The
best method is highlighted in bold, whereas the second best is underlined.

ACDC FLARE Friedman Final

DSC HD ECE TACE DSC HD ECE TACE Rank Rank

FL [14] (γ = 3) 0.874 1.60 0.134 0.136 0.893 3.93 0.039 0.061 6.00 6
ECP [28] (λ = 0.1) 0.889 1.44 0.067 0.112 0.873 5.85 0.046 0.131 6.00 6
LS [32] (α = 0.1) 0.891 1.35 0.067 0.066 0.891 3.61 0.062 0.047 4.00 4
SVLS IPMI’21 [10] 0.883 1.69 0.059 0.111 0.894 4.02 0.026 0.115 5.13 5
MbLS CVPR’22 [15] 0.886 1.46 0.057 0.052 0.891 3.65 0.031 0.031 3.50 3
NACL MICCAI’23 [22] 0.884 1.52 0.056 0.059 0.896 3.34 0.025 0.026 2.50 2
BWCR MICCAI’23 [11] 0.864 1.82 0.063 0.079 0.868 4.47 0.041 0.099 6.63 8
CRaC (Ours) 0.891 1.48 0.052 0.051 0.895 3.24 0.029 0.029 1.88 1

first 50 epochs, and reduced to 10−4 afterwards. Following [22], the models are
trained on 2D slices, and the evaluation is performed over 3D volumes.

Evaluation. Segmentation: we employ common segmentation metrics in the
medical domain, such as the DICE coefficient (DSC) and the 95% Hausdorff
Distance (HD). Calibration: following recent works [22,24] we resort to the ex-
pected calibration error (ECE) [25] on foreground classes, as in [10], and Thresh-
olded Adaptive Calibration Error (TACE) (threshold of 10−3) [26]. We further
compute the Friedman rank [6], to fairly compare the performance of different
algorithms in various settings. More details are given in the Appendix.

Comparison to state-of-the-art calibration approaches. In Table 1 and 2,
we present the quantitative results of our approach compared to a list of relevant
state-of-the-art calibration approaches, when using U-Net and nnU-Net as seg-
mentation backbones, respectively. In terms of segmentation performance,
our proposed CRaC brings very competitive performance, typically ranking as
best, or second best approach, regardless of the segmentation backbone em-
ployed. Regarding calibration, the trend observed is similar, with CRaC pro-
viding well-calibrated models, either improving or at par with state-of-the-art for
calibration. Furthermore, as it is common in evaluating many methods in multi-
ple settings, we assess the overall performance with a multi-criteria analysis,
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the Friedman Rank. The results from this metric, which are reported at the
right-most columns of both Tables 1 and 2, show that CRaC ranks at the first
position, outperforming existing methods when a trade-off between calibration
and segmentation performance is considered. Furthermore, the first rank position
is maintained even when employing a more powerful backbone, i.e., nnU-Net,
consistently delivering the better segmentation-calibration compromise.

Fig. 1: Instability of NACL fine-tuning. Discriminative (left) vs. calibration
performance (right) as a function of λ in NACL [22], for both U-Net (top) and
nnU-Net (bottom).

Benefits compared to NACL. In this section we compare the sensitivity of
NACL [22] to the choice of its λ value in Eq. 1, as our approach improves
NACL by incorporating a mechanism to learn and adapt the class and region-
wise penalty terms λkr in Eq. 3. We found that, despite performing at par in
some settings, the performance of NACL significantly varies with the value of
its penalty weight which, in addition, is dataset-dependent (Figure 1).

For example, the left-top plot (U-Net) demonstrates that while setting λ =
0.3 in NACL yields the best discriminative performance in ACDC, it is sub-
stantially deteriorated in the FLARE dataset. Furthermore, the λ value that
optimizes the discriminative performance (left plots) may not be the same that
minimizes the miscalibration issue (right plots). We also note that these obser-
vations hold for both U-Net (top) and nnU-Net (bottom). Thus, while one may
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argue that by fine-tuning λ in NACL can lead to improvements over CRaC (and
only in certain settings), we advocate that performing a validation search in a
dataset-basis is impractical for real-world problems, making of our approach an
appealing solution.

4 Conclusion.

We presented a novel approach to calibrate segmentation networks, which ac-
counts for the inherent difficulties of different classes and regions. To address this
issue, our method integrates class and region-adaptive constraints, whose penalty
weights are learned during training via an Augmented Lagrangian method. Re-
sults demonstrate that our approach outperforms existing approaches, becoming
an excellent alternative to deliver high-performing and robust models.
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