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Abstract. Monocular depth estimation in colonoscopy video aims to
overcome the unusual lighting properties of the colonoscopic environ-
ment. One of the major challenges in this area is the domain gap between
annotated but unrealistic synthetic data and unannotated but realistic
clinical data. Previous attempts to bridge this domain gap directly tar-
get the depth estimation task itself. We propose a general pipeline of
structure-preserving synthetic-to-real (sim2real) image translation (pro-
ducing a modified version of the input image) to retain depth geometry
through the translation process. This allows us to generate large quanti-
ties of realistic-looking synthetic images for supervised depth estimation
with improved generalization to the clinical domain. We also propose a
dataset of hand-picked sequences from clinical colonoscopies to improve
the image translation process. We demonstrate the simultaneous real-
ism of the translated images and preservation of depth maps via the
performance of downstream depth estimation on various datasets.
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1 Introduction

Colorectal cancer (CRC) is one of the leading causes of cancer mortality in the
United States; the American Cancer Society estimates that there will be over
150,000 new cases and 50,000 deaths in 2024. Increased screening is one of the
factors contributing to reductions in mortality [13]. Optical colonoscopy is the
gold standard method for CRC screening but its effectiveness is highly dependent
upon the skill of the physician performing the examination [9]. Around 20% of
potentially pre-cancerous polyps are missed during colonoscopies [12][14].

3D reconstruction from optical colonoscopy video can improve efficacy via
guidance and visualization to the physician, automatic measurements, and au-
tonomous navigation. One of the major challenges in this area is the lack of
realistic data suitable for training neural networks to perform depth and pose
estimation. While synthetic [10] and phantom [2] datasets exist, they do not
accurately represent the reflectance properties of in vivo tissue. Previous ap-
proaches towards closing the domain gap [8][11][15] do not target challenging
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viewpoints making up the majority of colonoscopy videos. In this work, we pro-
pose an image translation method that generates realistic-looking video frames
from synthetic colonoscopies while preserving the depth information and without
requiring complex modeling of mucus and in vivo tissue. In this way, we are able
to bridge the gap between unrealistic synthetic data with dense ground truth
depth annotation and realistic but un-annotated clinical data to improve depth
estimation on unseen clinical data. In addition, we introduce two new datasets
of manually selected frames from clinical colonoscopies representing viewpoints
that are particularly challenging for depth estimation and downstream recon-
struction. This data both improves the realism of our image translation results
and provides a dataset against which to test the quality of depth estimation re-
sults. Code is available at github.com/sherry97/struct-preserving-cyclegan and
data at endoscopography.web.unc.edu

2 Related Work

Prior datasets targeting reconstruction from colonoscopy come from clinical pro-
cedures (EndoMapper [1], Colon10K [7]), fully synthetic procedures (SimCol3D
[10], Zhang et al. [18]), or robotic colonoscopy of a silicone phantom model of the
colon (C3VD [2]). Clinical data by nature does not have per-frame depth or pose
annotations; while synthetic and phantom data have such annotations, the ge-
ometry and light reflectance properties of living tissue is challenging to replicate
synthetically and therefore the textures present in the synthetic and phantom
data are notably different from those observed in clinical practice (Fig. 1). While
the use of image translation to bridge the synthetic to clinical domain gap has
been addressed previously (Sec. 2.1), we propose a general modular framework
particularly targeting depth estimation (Sec. 2.2) on challenging viewpoints. This
is the first work that performs structure-preserving image translation from the
synthetic to clinical colonoscopy domain without requiring a pre-trained depth
estimator or feature extractor in the target clinical domain.

2.1 Domain gap

Using image translation for colonoscopic depth estimation, Rau et al. [11] pro-
pose image-to-depth translation to directly estimate depths from images. In con-

(a) Textures from SimCol3D [10]
(left), C3VD [2] (center), and pro-
posed oblique dataset (right).

(b) Viewpoint categories in colonoscopy: axial
(left, Colon10K [7]), oblique (center), and en
face (right).

Fig. 1: Sample frames from various datasets.

github.com/sherry97/struct-preserving-cyclegan
endoscopography.web.unc.edu
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trast, Mahmood and Durr [8] combine synthetic depth estimation with real-to-
synthetic image translation at inference.

For other tasks, Chen et al. [3] propose a structure-preserving image-to-image
generative adversarial network (GAN) to improve segmentation using mutual
information in the latent encoding. Similarly, Yoon et al. [17] propose using
GAN-based dataset augmentation to boost performance.

For general-purpose image translation, many previous works build upon Cy-
cleGAN [19] due to the structure preservation implicit in the cyclical architec-
ture. Cheng et al. [4] present a structure-preserving alternative that decomposes
style (extracted via a pretrained autoencoder) from structure (extracted via a
pretrained monocular depth estimator).

2.2 Depth estimation

In order to demonstrate the effectiveness of our image translation approach, we
use performance on monocular depth estimation as the metric for comparison.
Wang et al. [15] propose a self-supervised extension of Monodepth2 [6] for the
colonoscopy domain with an iterative refinement step. For general depth estima-
tion, modern Transformer-based methods [5][16] demonstrate high-quality depth
estimation results on non-medical data but rely on large training datasets.

3 Data

Generally, we can categorize the viewpoint of a single frame as axial, oblique, or
en face (Fig. 1b). Oblique and en face viewpoints can be challenging for depth
estimation due to the lack of strong geometric features. However, they make
up about 70% of non-obfuscated frames within a colonoscopy video so reliable
depth estimation from these views and their subsequent incorporation into re-
construction provides significant additional information about surface geometry
over reconstruction from axial views alone.

In this work, we introduce two distinct datasets: the first of oblique views
and the second of en face views. Both consist of sequences of consecutive frames
manually selected from a library of video recordings of full colonoscopy proce-
dures. The datasets have been curated on the basis of the viewpoint of each frame
such that a sequence extends as long as each consecutive frame is of the same
viewpoint category modulo gaps of up to 30 consecutive frames with excessive
obfuscation (e.g. water drops on the lens).

All frames are pre-processed in the same manner. Using computed camera
intrinsics and the Matlab undistortFisheyeImage function, we warp fisheye pro-
jection into a pinhole projection. We then crop the image to remove the unused
image area and resize to 270⇥216 pixels. The original videos were recorded using
CF and PCF series Olympus colonoscopes with a raw image size of 1350⇥1080.
The UNC Office of Human Research Ethics has determined that this work does
not constitute human subject research and does not require Internal Review
Board approval.
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Fig. 2: Image translation framework with image domains A and B, generators
G : A ! B and F : B ! A, and discriminators DA and DB . Let a 2 A, b 2 B
denote data samples and let D̂a denote the depth map corresponding to sample
a. Downstream depth estimation uses output of generator G(A).

Oblique dataset The first dataset, which we call the oblique dataset, consists
of sequences manually selected to exclude obfuscated frames, fully axial views,
and fully en face views. There are 93 sequences totalling 16,756 frames. Each
sequence has between 2 and 586 frames, averaging 180 frames per sequence.
We randomly divide this dataset into 90% train and 10% test partitions with
divisions being made at the sequence (rather than frame) level.

En face dataset The second dataset, which we call the en face dataset, consists
of sequences manually selected to exclude obfuscated frames and contain only
fully en face views. There are 14 sequences totalling 816 frames. Each sequence
has been 15 and 136 frames, averaging 58 frames per sequence. In this work, we
only use this dataset for evaluation due to its small size.

4 Methods

We demonstrate the realism of the image translation result and effectiveness of
our proposed structure-preserving loss term via downstream depth estimation.
Fig. 2 illustrates our framework. Our image translation result is additionally
improved with the use of our proposed data over pre-existing datasets.

Image translation We use the standard CycleGAN losses with generator G : A !
B and discriminator DB (and similarly generator F : B ! A and discriminator
DA):

LGAN(G,DB , A,B) = Eb⇠pdata(b)[logDB(b)] + Ea⇠pdata(a)[log(1�DB(G(a)))]
(1)

Lcyc(G,F ) = Ea⇠pdata(a)[||F (G(a))� a||1] + Eb⇠pdata(b)[||G(F (b))� b||1] (2)

In order to explicitly constrain the translation to preserve depth informa-
tion so that the depths and translated image pairs can be used to train super-
vised depth estimation, we add mutual information loss. Mutual information
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circumvents the recursive problem of depth estimation or feature extraction on
challenging clinical data.

LMI(D̂A, G) = Ea⇠pdata(a)

|D̂a|X

i=1

|Î(G(a))|X

j=1

|D̂i \ Îj |
N

log
N |D̂i \ Îj |

|D̂a||Î(G(a))|
(3)

where D̂a is the ground truth depth map corresponding to the input sample
a, Î(·) is image intensity (average of all color channels), and N is the number
of total combinations. We discretize the data into 256 bins for both depths and
intensity. This loss is only applied for A ! B translation. Our full objective is:

L(G,F,DA, DB) =�GANLGAN(G,DB , A,B) + �GANLGAN(F,DA, B,A)

+ �cycLcyc(G,F ) + �MILMI(D̂A, G)

We train CycleGAN to perform image translation with SimCol3D as domain
A and our proposed oblique dataset as domain B. Table 2 describes the ablations
in this portion used for downstream depth estimation.

Depth estimation A significant mismatch between the translated image and the
original depth map (lack of structure preservation during translation) will result
in poor depth estimation generalization for any model. Here we are interested in
depth estimation performance as a metric for the structure preservation through
the image translation process and therefore note any architecture could be used.
We use the Monodepth2 [6] architecture trained fully supervised from scratch.
We pair the RGB result from image translation with the depth map from the
original synthetic data for labels. In order to avoid data overlap, we measure
performance of all models on C3VD [2]. We convert the fisheye projection to a
pinhole projection using the OpenCV undistort function.

Implementation details For image translation, we train the modified CycleGAN
using four NVIDIA Titan Xp GPUs for 30 epochs. We use the Adam optimizer
and initial learning rate of 2e-4. We use weights �GAN = 10.0, �cyc = 0.5, and
�MI = 1.0.

For depth estimation with Monodepth2, we use a Resnet34 backbone and
train the model using a NVIDIA Quadro RTX 5000 for 20 epochs with mean
squared error loss, Adam optimizer, and initial learning rate of 1e-4. We use
data augmentations of random cropping to 256 ⇥ 256 and random horizontal
and vertical flipping. At inference, we rescale images to 256 ⇥ 256. All code is
implemented using Pytorch.

5 Results

5.1 Image translation

We find that the translation result (Fig. 3) has both improved texture realism
and retains the overall geometry of the input image. Most notably, the translation
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Table 1: Image translation metrics against oblique dataset. Using LMI helps the
model produce images more similar to the distribution of test images.

Model Frechet Inception Distance # Kernel Inception Distance #
CycleGAN 2.225 0.220± 0.0179

Ours 0.300 0.090± 0.0146
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Fig. 3: Examples comparing the SimCol3D input frame, our translation, closest
image in oblique dataset via SSIM, and translation with vanilla CycleGAN.

adds the specular points missing from SimCol3D without explicit representation.
The specularity is distributed in a manner consistent with our expectation that
surfaces closer to the camera and having surface normal directions parallel with
the viewing direction will exhibit more specular effects than those either farther
from the camera or with normal direction different from that of the viewing
direction. In Table 1, we compare translation metrics against translation with
�MI = 0 (vanilla CycleGAN) and find the metrics support our perception of
improved translation results when �MI > 0.

5.2 Depth estimation

We measure depth estimation performance on C3VD [2] for comparison against
baseline models due to its better realism compared to other options but note
that the textures and geometries represented in that dataset remain different
from those observed in clinical practice. Our qualitative assessment of depth
predictions on our proposed oblique and full en face datasets demonstrate a
notable performance gap on realistic images.
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Table 2: Ablations on translation target dataset and use of MI loss. All depth
estimations use Monodepth2 architecture, varying in input data.
Depth Estimation Input Translation Domain B Uses MI Loss
Baseline (no translation) - -

Ours oblique X
OursCG oblique -

OursC10K Colon10K X
OursC3VD C3VD X

Table 3: Depth evaluation on C3VD (mm). Best categorical performance high-
lighted. Multi-shot models train on C3VD while zero-shot rely on generalization.
On easy data like C3VD, all experiments perform similarly.

Category Model RMSE # Absrel # � < 1.25 " � < 1.252 " � < 1.253 "
Monodepth2 [5] 18.640 0.297 0.490 0.731 0.861

Multi-shot UNet [5] 5.520 0.090 0.917 0.994 0.999
OursC3VD 7.250 0.150 0.794 0.968 0.996

NormDepth [15] 7.401 0.169 0.731 0.948 0.997
Baseline 9.847 0.205 0.626 0.934 0.991

Zero-shot OursC10K 8.089 0.174 0.735 0.958 0.995
OursCG 7.636 0.174 0.730 0.960 0.998
Ours 7.209 0.174 0.738 0.948 0.994

C3VD In Table 3, we provide metrics computed after median rescaling to adjust
depth scale across models. For zero-shot models (relying on generalization), we
find that our framework produces the best performance in most metrics. We
also find that the performance is similar across various models and training
datasets. We conclude that the performance on this dataset is satisfactory given
the architecture and simplicity of the evaluation dataset, and look for a larger
performance gap on more challenging clinical frames.

Oblique In Fig. 4, we show a few examples of depth estimation using NormDepth
and our framework evaluated on images from the proposed oblique test parti-
tion (additional examples in Fig. S.6). We have not used masking to prevent
depth distortions at specular points. Overall, we see that NormDepth is biased
towards predicting a depth depression near the center of the frame and poor
predictions near occlusion boundaries. Meanwhile, the baseline model produces
significant and repeated errors in the depth map at specular points. Our pro-
posed model produces the best representation of rounded haustral ridges and
better distinction between structures. Compared to OursC10K and OursC3VD,
our model produces depths with stronger discontinuities at occlusion boundaries
and overall captures a more nuanced and accurate surface geometry.

En face In Fig. 5, we show a few examples of depth estimation using NormDepth
and our framework on images from the proposed en face dataset (additional ex-
amples in Fig. S.7). In these examples, the bias of NormDepth towards predicting
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Input Ours OursC10K OursC3VD Baseline NormDepth

Fig. 4: Depth estimation on oblique dataset. Boxes highlight differences. Image
translation framework improves monocular depth estimation in general, with
best performance using our proposed dataset as translation target.

Input Ours OursC10K OursC3VD Baseline NormDepth

Fig. 5: Depth estimation on en face dataset. Boxes highlight differences. Notable
improvements from our framework on frames with few geometric features.

a center depth depression is particularly evident, as are the failures of the base-
line model in specular areas. Due to the nature of this dataset, there is greater
representation of surfaces with strong visual texture from vasculature. Thus we
can see that our proposed method has overall improved representation of the
overall surface geometry compared to ablations but can also produce distortions
to the depth map at regions with strong vascular texture.

6 Conclusions

We have demonstrated that structure-preserving sim2real image translation im-
proves monocular depth estimation in challenging colonoscopic frames. To aid
this task, we introduce two datasets of hand-picked sequences from clinical data
focusing on viewpoints that are under-represented in existing datasets. The im-
age translation results improve texture realism (especially for specular points)
while retaining sufficient depth geometry for successful subsequent training of
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depth estimator networks. We provide evaluation of depth estimation on C3VD
and qualitative evaluations on our proposed datasets, finding significant perfor-
mance improvements on challenging frames using this framework.

6.1 Limitations and Future Work

Depth distortions in areas with strongly visible vasculature and few geometric
features could be ameliorated by incorporating additional data into the transla-
tion target. Future work could focus on applying this approach to pose estimation
or other (non-Monodepth2) depth estimation architectures.
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