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Abstract. Existing learning-based cortical surface reconstruction ap-
proaches heavily rely on the supervision of pseudo ground truth (pGT)
cortical surfaces for training. Such pGT surfaces are generated by tra-
ditional neuroimage processing pipelines, which are time consuming and
difficult to generalize well to low-resolution brain MRI, e.g., from fetuses
and neonates. In this work, we present CoSeg, a learning-based cortical
surface reconstruction framework weakly supervised by brain segmen-
tations without the need for pGT surfaces. CoSeg introduces temporal
attention networks to learn time-varying velocity fields from brain MRI
for diffeomorphic surface deformations, which fit an initial surface to tar-
get cortical surfaces within only 0.11 seconds for each brain hemisphere.
A weakly supervised loss is designed to reconstruct pial surfaces by inflat-
ing the white surface along the normal direction towards the boundary of
the cortical gray matter segmentation. This alleviates partial volume ef-
fects and encourages the pial surface to deform into deep and challenging
cortical sulci. We evaluate CoSeg on 1,113 adult brain MRI at 1mm and
2mm resolution. CoSeg achieves superior geometric and morphological
accuracy compared to existing learning-based approaches. We also ver-
ify that CoSeg can extract high-quality cortical surfaces from fetal brain
MRI on which traditional pipelines fail to produce acceptable results.
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1 Introduction

Cortical surfaces, i.e., the inner/white and outer/pial surfaces of the cerebral
cortex, play a crucial role in visualizing the anatomical structure as well as
quantitative characterizing the morphology of the cortex. Traditional neuroim-
age processing pipelines [9,11,12,21] achieved great success for cortical surface
reconstruction from adult or neonatal brain MRI. However, these pipelines nor-
mally incorporate multiple processing steps and require more than 6 hours for
a single subject. The limited accuracy of prior processing steps will also cause
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subsequent corruptions in cortical surfaces. Moreover, traditional pipelines con-
tain a large amount of carefully tuned parameters, which make them difficult to
generalize across data domains in different age groups or acquisition protocols.

To boost the accuracy and efficiency of cortical surface reconstruction, recent
studies [8,13,14,32] leverage deep learning-based approaches to predict implicit
surface representations, i.e., segmentations and signed distance functions (SDF).
Explicit 3D meshes are extracted from the implicit surfaces by Marching Cubes
(MC) algorithm [17]. Topology correction algorithms [1,27] are used to detect
and repair topological errors such that the extracted surfaces are homeomorphic
to a 2-sphere. However, this is a time-consuming process based on iterative re-
finement, which is hard to accelerate efficiently through engineering efforts. In
addition, although existing approaches are capable of producing accurate seg-
mentations [2,14,24,29,32] or SDFs [8,13], these volumetric representations in-
trinsically face the challenges of partial volume effects, leading to difficulties for
the MC algorithm in accurately capturing the cortical folding of extracted sur-
faces. This issue is especially pronounced within the cortical sulci, in particular
for low-resolution brain MRI such as fetal and neonatal data.

Instead of learning implicit surfaces, latest works [3,4,6,15,16,18,19,20,25,34]
focus on learning explicit surface deformations end-to-end from brain MRI. Such
approaches only require a few seconds to deform an initial mesh to target cortical
surfaces. However, one major limitation is that they heavily rely on the super-
vision of pseudo ground truth (pGT) cortical surfaces generated by traditional
pipelines [9,11,12,21] such as FreeSurfer [11]. Their long processing time makes it
expensive to collect a large dataset for training. Also, errors in pGT surfaces in-
evitably form an upper bound for the achievable accuracy. Moreover, traditional
pipelines may fail to extract pGT surfaces from fetal or clinical MRI sequences,
which are inherently limited in scan time and thus lower image resolution.

Contributions: We present CoSeg, a weakly supervised cortical surface re-
construction framework without the need for pGT surfaces during the training
phase. CoSeg learns cortical surfaces explicitly with the weak supervision of corti-
cal ribbon segmentations, which are more accessible than pGT cortical surfaces
particularly for low-resolution images [2,29]. We introduce temporal attention
networks (TA-Net) [18] to learn diffeomorphic surface deformations from brain
MRI. To address partial volume effects on the pial surfaces, we propose a novel
weakly supervised loss consisting of a boundary loss, which inflates the white
surface towards the boundary of the cortical gray matter (cGM) segmentation,
as well as an inflation loss, which constraints the inflation to follow the normal
direction. We evaluate CoSeg on the HCP young adult dataset [31] and provide
qualitative evaluation results for the dHCP fetal dataset [22]. The code for CoSeg
are released publicly at https://github.com/m-qiang/CoSeg.

2 Method

Temporal Attention Networks. Given an initial surface S0 ⊂ R3 with points
x0 ∈ S0, a diffeomorphic surface deformation can be defined via an ordinary

https://github.com/m-qiang/CoSeg
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Fig. 1. The architecture of the TA-Net. TA-Net predicts a TVF by learning a weighted
sum of multiple SVFs. The TVF is integrated to produce diffeomorphic surface defor-
mations which fit an initial input surface to the predicted cortical surface.

differential equation (ODE):

ẋ(t) = u(x(t), t), x(0) = x0, t ∈ [0, T ], (1)

where x(t) is the deformed surface point, and u(x, t) ∈ R3 is a learnable time-
varying velocity field (TVF). By integrating the flow ODE (1), the initial surface
S0 is deformed to a target surface ST with the points xT = x(T ).

Since our CoSeg framework is model agnostic, we introduce a temporal at-
tention network (TA-Net) based on CoTAN [18] to learn the TVF u(x, t). While
CoTAN is conditioned on the ages of the subjects, TA-Net is only conditioned
on the integration time t such that it can be extended to adult data. As shown
in Fig. 2, given an input brain MRI image, TA-Net uses a 3D U-Net [23] to learn
M = 2 stationary velocity fields (SVF) for each of R = 3 resolution levels. Thus,
there are total R×M SVFs denoted by u(x) ∈ RRM×3. Given an input inte-
gration time t ∈ [0, T ], a channel-wise time-varying attention map p(t) ∈ RRM ,
which satisfies

∑RM
i=1 pi(t) = 1, is predicted by a fully connected network to mea-

sure the importance of all R×M SVFs. By computing the weighted sum over all
SVFs, the TVF is represented as u(x, t) = u(x)⊤p(t).

We discretize a surface S by a 3D mesh M = (V,F , E), where V,F , E are the
sets of vertices, faces, and edges respectively. Then, we integrate the ODE (1)
with the forward Euler method. For each integration step k = 0, ...,K − 1, the
vertices can be updated by vk+1 = vk + hu(vk, hk), where h = T/K is the step
size and v0 ∈ V0 is the vertex of an input surface mesh M0. By integration, the
TA-Net deforms the input mesh M0 to a predicted cortical surface mesh M̂ with
vertices v̂ = vK . The TA-Net can be trained by minimizing a weakly supervised
loss between the predicted mesh M̂ and the pGT segmentation boundary.

Initial Surface Generation. We affinely align all brain MRI and pGT corti-
cal ribbon segmentations to a standard space such as MNI-152. A fixed initial
surface for all subjects is extracted from a template ribbon segmentation, which
is obtained from either an atlas or the group average of all pGT segmentations
in the training set. Inspired by [19,25], we use a distance transform algorithm [5]
to convert the template white matter (WM) segmentation to a SDF, where the
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interior/exterior of the segmentation has negative/positive value. The SDF is
smoothed by a Gaussian filter with standard deviation σ=6.0. An initial mesh
M0 is extracted by MC [17] from the SDF at level l=1.5. Such an initial mesh
has genus-0 topology since the implicit surface has been sufficiently smoothed
and inflated. We iteratively apply Laplacian smoothing and isotropic explicit
remeshing [7] to the initial mesh M0 until it has the desired number of vertices.

White Surface Reconstruction. CoSeg learns cortical surfaces weakly super-
vised by cortical ribbon segmentations, which contain the label maps of WM and
cGM. The WM label includes subcortical structures such as deep gray matter
and ventricle. The pGT segmentations can be obtained from either advanced
learning-based approaches [2,9,14,24,29] or manual annotations.

To learn the white surface, we minimize the commonly used bidirectional
Chamfer (bi-Chamfer) distance Lchamfer [3,10,16,18,19,25,33] between the pre-
dicted white surface mesh M̂ and the boundary of the pGT WM segmentation.
The boundary is represented as a 3D surface mesh M∗ extracted from the WM
segmentation by MC [17]. Taubin smoothing [28] is applied to alleviate the grid
artifacts of the extracted mesh. Then, the bi-Chamfer loss [10] is defined as:

Lchamfer(M̂,M∗) =
1

|V̂|

∑
v̂∈V̂

min
v∗∈V∗

∥v̂ − v∗∥2 +
1

|V∗|
∑

v∗∈V∗
min
v̂∈V̂

∥v∗ − v̂∥2,

(2)
where v̂ and v∗ are the vertices of the predicted mesh M̂ and the pGT WM
segmentation boundary M∗ respectively. We add the edge length loss Ledge and
normal consistency loss Lnc [3,33] to enforce surface smoothness. The final loss
is defined as Lwhite = Lchamfer+wedgeLedge+wncLnc with weights wedge and wnc.

Pial Surface Reconstruction. Since the cGM segmentations are strongly af-
fected by partial volume effects, it only provides weak supervision especially for
low-resolution data. Fig. 2-a shows that the cGM segmentation fails to identify
the voxels in the deep cortical sulci. Different from white surface reconstruction,
the pial surfaces learned through the bi-Chamfer loss may fail to capture cortical
folding and thus cause inaccurate estimation of morphological features.

Inspired by deformation-based approaches [21,26], we propose a novel weakly
supervised loss to tackle partial volume effects on the pial surfaces. The predicted
white surface is used as the input mesh M0. First, we introduce a boundary loss:

Lboundary(M̂,M∗) =
2

|V∗|
∑

v∗∈V∗
min
v̂∈V̂

∥v∗ − v̂∥2. (3)

The boundary loss is equivalent to a single-directional Chamfer loss that com-
putes the shortest distance from the boundary M∗ of the pGT cGM segmen-
tation to the predicted pial surface M̂. As shown in Fig. 2-c,d, the proposed
boundary loss will extend the input white surface towards the cGM boundary
without affecting the sulcal regions, whereas the bi-Chamfer distance will deform
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Fig. 2. T1w brain MRI from the HCP dataset [31]. (a) The cGM segmentation bound-
ary (yellow); (b) The expected pial surface (cyan); (c) Bi-Chamfer distance between
the cGM segmentation boundary and input white surface (blue). (d) The boundary
loss, i.e., single-directional Chamfer distance. (e) The inflation loss between the vertex
displacement (cyan) and the normal vector (blue) of the input white surface.

the surface outwards from the deep sulci. Next, an inflation loss is defined as:

Linflation(M̂,M0) = 1− 1

|V̂|

∑|V̂|

i=1

v̂i − vi0
∥v̂i − vi0∥+ ϵ

· n(vi0), (4)

where ϵ=10−12, vi0 is the i-th vertex of the input white surface M0, and n(vi0) is
the normal vector with ∥n(vi0)∥=1. The inflation loss measures cosine similarity
between the vertex displacement and the normal vectors (Fig. 2-e). This ensures
that the inflation of input white surface adheres to its normal direction. The
final weakly supervised loss is defined as Lweak = Lboundary + winflationLinflation.

The weakly supervised loss encourages the input white surface to inflate along
the normal until it fits the cGM boundary or two gyri touch each other. Such
inflation can alleviate the partial volume effects and allows the pial surfaces to
deform into the deep cortical sulci. During the inflation, mesh self-intersections
can be prevented by diffeomorphic surface deformations without additional col-
lision detection. Considering the smoothness terms, the final loss for pial surface
reconstruction is defined as Lpial = Lweak + wedgeLedge + wncLnc.

At the beginning of the training, we have M̂ = M0 since the input white
surface has not been deformed. The gradient of the inflation loss Linflation with re-
spect to the i-th vertex can be computed as ∇iLinflation|M̂=M0

= −n(vi0)/(ϵ|V̂|).
However, this leads to exploding gradients as ϵ is very small. To address this is-
sue, we pre-train the TA-Net for a few epochs by replacing Lweak with a MSE loss
Lmse(M̂,MN ) =

∑|V̂|
i=1 ∥v̂i − viN∥2/|V̂|, where MN is an inflated white surface

with vertices viN = viN−1 + γn(viN−1) for N=1, ..., 10 and γ=0.1. The predicted
surface learns to extend outwards during pre-training while avoiding exploding
gradients. After pre-training, we resume to use Lweak as the reconstruction loss.

3 Experiments

HCP Young Adult Dataset. We evaluate CoSeg on the publicly available
HCP young adult dataset [31] with 1,113 T1w brain MRI, cortical ribbon seg-
mentations and cortical surfaces extracted by the HCP pipeline [12] with quality
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Table 1. Comparison with existing learning-
based approaches in terms of the types of sur-
face representation, required supervision and
primary loss functions.

Method Type pGT Loss function

3D U-Net [23] Implicit Seg Cross Entropy
DeepCSR [8] Implicit SDF L1 Loss
Vox2Cortex [3] Explicit Surface Bi-Chamfer
CortexODE [19] Explicit Surface Bi-Chamfer
CFPP [25] Explicit Surface Bi-Chamfer
CoTAN [18] Explicit Surface Bi-Chamfer
CoSeg (Ours) Explicit Seg Weakly Supervised

Table 2. Comparison with implicit
approaches on the HCP dataset at
1mm/2mm resolutions. The ASSD
(mm) and HD90 (mm) are reported.

White Pial
Method ASSD↓ HD90↓ ASSD↓ HD90↓

1m
m 3D U-Net 0.180 0.373 0.432 1.257

DeepCSR 0.213 0.468 0.436 1.456
CoSeg 0.177 0.389 0.257 0.553

2m
m 3D U-Net 0.385 0.831 0.833 3.125

DeepCSR 0.404 1.019 0.904 4.007
CoSeg 0.330 0.756 0.361 0.767

Fig. 3. Pial surfaces predicted by implicit approaches on the HCP dataset. The runtime
required for each brain hemisphere (including topology correction) is reported.

control. The segmentations are used as the pGT for training, and the pGT cor-
tical surfaces are only used for evaluation. The dataset is split by the ratio of
60/10/30% for training/validation/testing. All T1w images and segmentations
have been affinely aligned to the MNI-152 space. We compute the average seg-
mentations of all training subjects as a template, from which we extract an
initial surface with 160k vertices. Both MRI and segmentations are resampled
to 1mm/2mm isotropic resolutions and clipped to the sizes of 112×224×176 and
56×112×88 for each brain hemisphere. Without loss of generality, we only con-
sider the left hemisphere in the experiments. We train TA-Nets for 200 epochs
by Adam optimizer with learning rate 0.0001. For pial surfaces, we first pre-train
the TA-Net using the MSE loss Lmse for 20 epochs, and then optimize the weakly
supervised loss Lweak for 180 epochs. We use wedge=0.5 and wnc=5.0 for smooth-
ness terms. The integration time and step size are set to T=1 and h=0.02 with
K=50 steps. We compare CoSeg with both implicit and explicit learning-based
cortical surface reconstruction approaches as shown in Table 1. All experiments
are performed on a NVIDIA RTX3080 GPU with 10GB memory.
— Comparison with Implicit Approaches: We compare CoSeg with implicit deep
learning-based approaches for 1mm and 2mm resolutions. For CoSeg, we train
two TA-Nets for white and pial surfaces supervised by the pGT segmentation
boundary. The weights winflation are set to 2.0/5.0 for 1mm/2mm resolutions.
Since the main backbone of the TA-Net is a 3D U-Net [23], we train U-Nets
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Table 3. Comparison with explicit learning-based approaches and ablation studies of
CoSeg on the HCP dataset at 1mm/2mm resolutions. The ASSD (mm), HD90 (mm),
errors of cortical thickness ethick (mm) and sulcal depth esulc (mm) are reported. The
best results are in bold and the second best results are underlined.

Resolution (1mm) Resolution (2mm)
Method ASSD↓ HD90↓ ethick ↓ esulc ↓ ASSD↓ HD90↓ ethick ↓ esulc ↓

Vox2Cortex [3] 0.292 0.641 0.511 1.238 0.542 2.026 0.731 1.432
CortexODE [19] 0.352 0.796 0.448 0.672 0.610 1.787 0.742 1.303
CFPP [25] 0.274 0.671 0.496 1.417 0.578 2.385 0.872 1.647
CoTAN [18] 0.293 0.769 0.534 1.438 0.538 1.966 0.781 1.781

CoSeg (winflate=0.0) 0.253 0.564 0.379 1.389 0.383 0.980 0.551 1.580
CoSeg (winflate=2.0) 0.252 0.539 0.298 0.530 0.347 0.769 0.424 0.686
CoSeg (winflate=5.0) 0.273 0.627 0.320 0.435 0.351 0.777 0.386 0.397
CoSeg (winflate=10.0) 0.298 0.736 0.362 1.120 0.370 0.881 0.421 0.797

Fig. 4. Pial surfaces (2mm) predicted by explicit approaches on the HCP dataset.

to learn segmentations for fair comparison. We also compare to DeepCSR [8],
of which the pGT SDFs are created by the distance transform [5] of pGT seg-
mentations. The surface meshes (|V |≈150k) are extracted by MC followed by
topology correction [1] and Taubin smoothing [28]. The performance is evaluated
by the average symmetric surface distance (ASSD) and 90th-percentile Hausdorff
distance (HD90) [3,8,19] between the predicted and pGT cortical surfaces.

Table 2 reports that CoSeg achieves superior geometric accuracy except for
white surfaces at 1mm. Fig. 3 shows that CoSeg is able to deform the pial
surfaces into deep sulci, while the implicit approaches fail to capture the cortical
sulci due to intrinsic partial volume effects of volumetric data, leading to large
geometric errors for pial surfaces. CoSeg only requires 0.11s of runtime for each
brain hemisphere. This is orders of magnitude faster than the HCP pipeline,
U-Net and DeepCSR as reported in Fig. 3. CoSeg only produces a negligible
number of self-intersecting faces, i.e., 0.06/3.65 out of 330k faces on average for
white/pial surface respectively.
— Comparison with Explicit Approaches: We compare CoSeg with explicit deep
learning-based approaches including Vox2Cortex [3], CortexODE [19], Corti-
calFlow++ (CFPP) [25] and CoTAN [18]. For CoTAN we use the same archi-
tecture as the TA-Net for adult data. To show the advantage of proposed weakly
supervised loss, we train all approaches to learn pial surfaces from the pGT seg-
mentation boundary at 1mm/2mm resolutions. The pGT white surfaces are used
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Fig. 5. Cortical surfaces of a 32.4-week subject in the dHCP fetal dataset.

as the input for training, such that the predicted and pGT pial surfaces have
the same mesh connectivity. This allows vertex-to-vertex comparison of cortical
morphological features [12]. We compute the average L1 errors of the cortical
thickness and the sulcal depth of midthickness surfaces over all vertices between
the predicted and pGT cortical surfaces. The geometric accuracy is measured
by ASSD and HD90. We also conduct ablation studies to explore the influence
of different weights winflation for the inflation loss Linflation on CoSeg.

As shown in Table 3 and Fig. 4, CoSeg achieves superior geometric and
morphological accuracy. Existing explicit approaches [3,18,19,25], which use the
bi-Chamfer loss (see Table 1), overfit to the pGT segmentation boundary and
thus fail to fit the deep cortical sulci especially for low resolution samples. This
results in inaccurate morphological features, i.e., greater cortical thickness and
shallower sulcal depth (see Appendix). Our ablation study shows that the infla-
tion loss effectively reduces morphological errors. However, excessive weight for
the inflation loss also affects the performance, since the vertex displacement of
the pial surface may not strictly follow the normal direction of the white surface.

dHCP Fetal Dataset. We evaluate CoSeg on the dHCP fetal dataset [22] with
241 T2w fetal brain MRI scanned at the ages of 22–38 weeks. The dataset is
split by the ratio of 60/10/30%. The voxel size of the T2w images is 0.5mm3.
However, this is a still relatively low resolution as the fetal brains are very small.
The pGT tissue segmentations are created by the BOUNTI pipeline [29], a fully
validated learning-based fetal brain segmentation approach. The pGT cortical
ribbon segmentations are created by merging the tissue labels. Both T2w images
and segmentations are affinely aligned to a 36-week fetal brain MRI atlas [30]
and clipped to the size of 112×224×176 for each hemisphere. An initial surface is
generated based on the segmentation atlas [30]. For CoSeg we set winflation=5.0.

We compare CoSeg with the dHCP neonatal pipeline [21], CoTAN [18] and
3D U-Net supervised by pGT segmentations. Since the Dice score cannot reflect
the geometric accuracy, we provide qualitative comparisons in Fig. 5. It shows
that CoSeg predicts high-quality surfaces, while the dHCP neonatal pipeline fails
to generalize well on fetal subjects. The pial surfaces predicted by U-Net and
CoTAN are severely affected by the partial volume effects of the cGM. Compared
to the dHCP neonatal pipeline which requires 6.5 hours of runtime, CoSeg only
needs less than 0.2 seconds for each brain hemisphere.
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4 Conclusion

In this work, we propose CoSeg for diffeomorphic cortical surface reconstruction
weakly supervised by cortical ribbon segmentations. A novel weakly supervised
loss is designed to address partial volume effects and deform the pial surfaces
into deep cortical sulci. CoSeg shows remarkable results on both HCP young
adult and dHCP fetal dataset without the need for pGT cortical surfaces. One
limitation is that CoSeg guides vertex displacement strictly along the normal of
the input white surface, with potential to influence anatomical fidelity of pial
surfaces. The efficacy of CoSeg is also affected by the quality of pGT segmenta-
tions. Looking ahead, we plan to explore semi-supervised learning, utilizing both
labeled segmentations and unlabeled MRI intensity to refine the performance.
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