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Abstract. In general, diffusion model-based MRI reconstruction meth-
ods incrementally remove artificially added noise while imposing data
consistency to reconstruct the underlying images. However, real-world
MRI acquisitions already contain inherent noise due to thermal fluctu-
ations. This phenomenon is particularly notable when using ultra-fast,
high-resolution imaging sequences for advanced research, or using low-
field systems favored by low- and middle-income countries. These com-
mon scenarios can lead to sub-optimal performance or complete failure of
existing diffusion model-based reconstruction techniques. Specifically, as
the artificially added noise is gradually removed, the inherent MRI noise
becomes increasingly pronounced, making the actual noise level inconsis-
tent with the predefined denoising schedule and consequently inaccurate
image reconstruction. To tackle this problem, we propose a posterior
sampling strategy with a novel NoIse Level Adaptive Data Consistency
(Nila-DC) operation. Extensive experiments are conducted on two public
datasets and an in-house clinical dataset with field strength ranging from
0.3T to 3T, showing that our method surpasses the state-of-the-art MRI
reconstruction methods, and is highly robust against various noise levels.
The code for Nila is available at https://github.com/Solor-pikachu/Nila.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a crucial means for medical diagnostics,
yet with major drawbacks of long acquisition times and high operational costs.
To accelerate MRI scans, a common approach is using multiple coils to acquire
the k-space data without obeying the Nyquist sampling theorem, and then to
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Fig. 1: General illustration of diffusion model-based MRI reconstruction. Note
that the MRI data (measurements) not only contain signals but also noise due
to hardware and subject-related thermal fluctuations. This can interfere with
the reverse diffusion process, where artificial Gaussian noise is used for image
initialization and gradually removed with a pre-defined schedule.

reconstruct the image with the incorporation of prior knowledge of it[1,2,3], such
as sparsity and total variation[4,5]. Deep learning models have been utilized to
learn and apply prior knowledge inherently within existing databases, including
both supervised[6,7,8,9] and generative paradigms[10].

Recently, diffusion models have been applied to improve reconstruction, where
the data consistency term of k-space is integrated as the guidance for the genera-
tive process[11,12,13,14,15], i.e, learned reverse process. In diffusion models[16,17],
there are: 1) the forward process created with Markov chains where the noise
at different levels is added to images that represents the distribution of data; 2)
the learned reverse process where the images of data distribution are generated
staring from a known distribution, i.e, Gaussian noise.

However, hardware and subject-related thermal fluctuations cause the pres-
ence of noise in measured k-space. As illustrated in Fig. 1, this inherent noise
propagates into the diffusion model-based reconstruction process through the
data consistency term and interferes with the pre-defined noise schedule used for
training the reverse process. This is an issue in the late stage of the reverse pro-
cess when approaching the noise-free data distribution. Consequently, diffusion
model-based reconstruction methods may experience sub-optimal performance
or even failure when the MRI measurement noise is not negligible, such as in
the case of low-field MRI[18], functional MRI (fMRI), and diffusion-weighted
imaging (DWI)[19].

In this work, a noise level adaptive data consistency (Nila-DC) operation is
proposed for image reconstruction with a lambda rescale function (c.f. Fig. 2
(b)) that ensures robust guidance of k-space regardless of noise when using dif-
fusion models. This approach is validated on multiple datasets of different field
strengths, imaging sequences, and noise levels, including challenging scenarios
such as accelerated DWI and low-field MRI. In the following sections, the dis-
turbance of noise to the learned reverse process is formulated and experimental
results using Nila-DC are presented.
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Fig. 2: Overview of the proposed method. (a) The proposed data consistency
(Nila-DC) operation. The computed gradient (AHAxt − AHy) can be noisy
due to MRI noise in y (c.f. Eqs. 7 and 8) , and is therefore adjusted by a
attenuation function (lambda). (b) The attenuation function (c.f. Eq. 10) used
to rescale the DC gradient. t is the index of the reverse step. (c) The image
reconstruction process, where Gaussian noise initialized xt undergoes multi-step
reverse diffusion process with the guidance from Nila-DC.

2 Methodology

Alike many diffusion model-based techniques, reconstruction is one of the sam-
ples from the posterior distribution which is formulated with two components:
1) the likelihood term to describe the data consistency; 2) the diffusion prior
trained on image dataset[11,15,14,20]. We observed that the different noise level
in many acquisition scenarios affects the pre-defined noise schedule for training
a diffusion model and consequently leads to poor performance. In the below,
we present a noise level adaptive method to address this issue in the context of
using the diffusion denoised probabilistic model (DDPM) as a prior[21,22].

Reconstruction as Bayesian Inversion. Image reconstruction is approached
as a Bayesian problem, where the posterior p(x | y) is determined by the mea-
sured k-space y and a diffusion prior p(x) is trained on an image database[14,20].
Assuming the noise η normally distributed with zero mean and covariance ma-
trix σ2

yI, the likelihood p(y | x) for observing the y determined by y = Ax+ η
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and given the image x is given by a complex normal distributions

p(y | x) = CN (y;Ax, σ2
yI)

= (σ2
yπ)

−Np exp(-∥σ−1
y · (y −Ax)∥22) , (1)

The forward operatorA is composed of coil sensitivity maps S, a two-dimensional
Fourier transform F , and a k-space sampling operator P. Using Bayes’ formula,
we obtain each intermediate distribution in Fig. 2.

p (xt | y) ∝ p (xt) p (y | xt) (2)

Starting with the initial Gaussian noise q(xN ) ∼ CN (0, I) at t = N , p(xt) is
obtained with transition kernels {p(xt|xt+1)}t≤N

p(xt) ∝ p(xt|xt+1) · ... · p(xN−1|xN ) · q(xN ). (3)

With the learned transition kernel pθ(xt | xt+1) in denoising diffusion models,
samples are simulated from pθ(xt | y) using the reverse diffusion[17]:

xt−1 =
√

at−1∇xt
log pθ(xt | y) +

√
1− at−1z, z ∼ CN (0, I) , (4)

where at−1 :=
t−1∏
s=1

as, at−1 := 1 − βt−1, βt following a pre-defined schedule

{β0, β1, ..., βT } used in the forward process[16] , and

∇xt
log pθ(xt | y) = ∇xt

log p(xt | xt−1) +∇xt
log p(y | xt) . (5)

Further, we have

∇xt
log p(xt | xt−1) =

1√
at

(xt −
√
1− at(ϵθ(xt, t))) (6)

∇xt
log p(y | xt) = −(AHAxt −AHy)/σ2

y (7)

Eq. 6 represents the diffusion prior term, and Eq. 7 the data consistency term.
Note that Eq. 7 can be derived without approximation errors[23,24] because of
the MRI specific assumption in Eq. 1. Initially, when t is large, xt has less struc-
tural information and higher noise level. When t approaches 0, xt is expected
to recover structural information and have decreased noise level. However, it is
important to note that y is noisy in nature.

Noise Level Adaptive Data Consistency. During the computation of data
consistency, the adjoint of the k-space represents the under-sampled k-space with
additive noise. Then we have

AHy = AHAx̄ + AHσy, (8)

where x̄ is the noise-free image and σy is relative to noise level of images in the
training dataset (note that σy could be estimated via a quick calibration scan or
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from image background areas). This σy propagates through the diffusion reverse
process, adding extra noise σy in the image xt. According to Eqs. 4, 5, 6, 7, 8
and using gradient based sampling method, we have

xt−1 =
√
at−1

[
1√
at

(xt −
√
1− atϵθ(xt, t))− (AHAxt −AHAx̄)

]
+
√
at−1AHσy +

√
1− at−1z, z ∼ CN (0, I) , (9)

Although the introduction of noisy measurements by data consistency operation
may not cause problems during the early stage of the reverse process, as the noise
in xt is gradually removed, σy from noisy measurement will become dominant
at a certain stage, disturbing the pre-defined denoising schedule. Hence, we pro-
pose a new noise level adaptive data consistency operation to robustly utilize of
guidance information from MRI data while minimizing the impact of MRI noise.
From the pre-defined denoising schedule βt in{β0, β1, ..., βT }, we know that the
noise level at xt−1 is

√
1− at−1; According to Eq. 9, the additive noise propa-

gating from the data consistency operation into the diffusion reverse process is√
at−1AHσy. To keep denoising schedule βt unchanged, we introduce a rescale

function (Fig. 2(b)) to keep/decay the data consistency term. For simplicity,
we use a linear attenuation function λt = kt + b, starting with γ and linearly
decaying to 0 at the final moment:

λt =

{
1 ,

√
at−1AHσy <

√
1− at−1

kt+ b ,
√
at−1AHσy >

√
1− at−1

, (10)

k and b can be computed once σy and γ have been defined. In practice, step size
is scaled by λt. Finally, each reverse step in the proposed MRI reconstruction is
defined by:

xt−1 =
√
at−1

[
1√
at

(xt −
√
1− atϵθ(xt, t))− λt(AHAxt − (AHAx̄ + AHσy))

]
+
√

1− at−1z, z ∼ CN (0, I) . (11)

3 Experiments

Datasets and Baselines. We evaluated our approach on three datasets: 1)
The public fastMRI dataset[25]. From the official validation set, we randomly
selected 20 samples for each contrast (T1, T1 post contrast, T2, and FLAIR)
to form a test set of 80 samples. 2) The public low-field dataset M4Raw[26].
Based on its v1.6 release, 25 individuals from the test set, each with T1, T2, and
FLAIR data, were used to form another test set (75 samples in total). 3) An
additional in-house clinical dataset. With written informed consent obtained, T1
and FLAIR data were collected from 35 patients with white matter lesions from
a local hospital using a 3T MRI Siemens scanner. The proposed method Nila
is compared with L1-wavelet SENSE reconstruction[27], diffusion model-based
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MRI reconstruction method CSGM[11], Spreco[14], AdaDiff[15]. Following[25],
we used equidistant undersampling masks for all experiments because of ease of
implementation on MRI machines.

Training and Evaluation Details. The multi-coil images from fastMRI[25]
brain training set is coil-combined using ESPIRiT[27] and then used to train
our model, using code from guided diffusion[22]. The last four noisy slices were
removed from each volume, resulting in a total of ∼52k slice images for training.
We used a learning rate of 0.0001, batch size of 8, and Adam optimizer. Note
that this fastMRI trained model is also used to inference on the M4Raw and
clinical datasets. For CSGM and Spreco, their official pre-trained models were
used[11,14], whereas the AdaDiff model was trained on the same dataset as Nila.

To explore the robustness of different methods, the above models were tested
both with and without adding extra Gaussian noise to the fully sampled MRI
data. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) met-
rics were computed within the brain region, ignoring background reconstruc-
tion errors. Because low-field data is noisy, when evaluating on M4Raw, we set
σy = 0.05 for Nila and employed multiple repetition averaged images [26] (6
repetitions for T1 and T2; 4 repetitions for FLAIR) as the reference to calculate
the metrics.

Quantitative Results. Even without adding extra noise, our algorithm con-
sistently achieved highest PSNR and SSIM scores on all datasets (Table 1).
The differences between our method and others are statistically significant as
shown in the supplementary materials. The second best method Spreco per-
formed slightly better than CSGM and Adadiff, likely due to its early stopping
mechanism.

When the noise level was respectively controlled (Table 2), all algorithms
had reasonable results at low noise level (σ = 0.025). However, when noise
increased, the reconstruction quality of L1-wavelet, CSGM, and Adadiff declined
dramatically, sometimes even lower than Zero-filled reconstruction. In contrast,
our algorithm remained resilient, achieving the highest scores for scenarios.

Table 1: Quantitative assessment for the three test datasets at different acceler-
ation factors. No extra noise was added. The highest scores are marked in red,
second highest blue.

Dataset fastMRI Clinical M4Raw

Acceleration factor 6× 8× 6× 8× 3× 4×
Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filled 26.12 82.27 25.41 80.36 27.07 82.40 26.33 80.34 27.15 87.81 25.97 85.43
L1-wavelet 30.04 89.43 27.31 84.55 31.27 89.60 28.35 84.59 28.86 87.50 28.02 86.57
CSGM 35.04 93.53 32.11 90.78 34.67 92.65 31.57 88.94 26.73 84.53 25.63 82.78
Spreco 32.24 90.70 28.65 85.28 32.27 89.84 28.77 84.07 29.77 90.34 28.88 88.68
AdaDiff 33.25 91.79 29.62 86.66 32.84 90.81 29.60 85.65 29.10 88.29 28.10 86.22

Nila (ours) 37.08 95.74 34.82 94.21 36.10 94.34 33.54 91.55 30.23 91.59 29.86 90.06
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Table 2: Quantitative assessment under various noise levels at 6× acceleration
factor. Note that the sigma values represent the added noise to full sampled
data. The highest scores are marked in red, second highest blue.

Dataset fastMRI Clinical

noisy level σ = 0.025 σ = 0.05 σ = 0.1 σ = 0.025 σ = 0.05 σ = 0.1

Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filled 26.06 81.40 25.90 79.22 25.32 74.08 27.01 81.73 26.84 79.96 26.23 75.31
L1-wavelet 29.07 85.86 26.78 78.15 21.28 64.98 30.15 85.86 27.55 77.51 21.22 63.77
CSGM 31.15 87.64 25.08 76.16 19.47 61.78 31.53 87.16 25.93 75.73 19.64 61.52
Spreco 31.31 89.03 29.62 84.93 25.89 74.23 31.32 88.03 29.58 83.88 26.41 74.10
AdaDiff 29.29 82.93 25.83 73.8 21.99 64.82 29.45 82.74 26.04 73.50 22.12 64.45

Nila (ours) 34.98 93.96 33.56 92.49 31.86 90.38 34.11 91.53 32.80 89.59 31.25 87.15

Fig. 3: Typical reconstructed images. The white numbers indicate the
PSNR/SSIM scores. (a) 6× acceleration on fastMRI. (b) 6× acceleration on
fastMRI with added Gaussian noise. (c) 6× acceleration on the clinical dataset.
Only the proposed method recovered the small white matte lesion as highlighted.
(d) 4× acceleration on M4Raw. CSGM and AdaDiff failed to provide usable im-
ages.
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Qualitative Evaluation. Representative reconstruction results are presented
in Fig. 3. Consistent with the qualitative metrics, our algorithm had the highest
reconstruction quality regardless of noise levels, clearly revealing the anatomical
structures as well as small white matter lesions.

Real-World DWI Reconstruction. Additionally, we experimented with prospec-
tively undersampled 1.5T DWI data (3× acceleration, b-value = 800). Due to
the nature of DWI, ground truth images are not possible to obtain here, but
it is obvious that our method again achieved the highest SNR and the least
reconstruction artifacts (Fig. 4).

Fig. 4: Reconstruction of prospectively accelerated DWI data. (a) Reconstruction
from a single repetition. (b) Averaged from 3 orthogonal diffusion weighting
directionseach by 3 repetitions. σy was set to 0.05 for Nila, as estimated from
zero-filled reconstruction.

Fig. 5: Reconstruction of Nila with added noise σ = 0.05 under different settings.
(a) Fully sampled image with added σ = 0.05 noise. It is for visualization of the
noise level. (b - e) Nila reconstruction using σy values of 0, 0.025, 0.05, and
0.1, respectively. (d) Fully sampled image without adding extra noise (clean
reference). With σy set to 0, Nila falls back to conventional DDPM-based MRI
reconstruction like Eq. 9. The white numbers indicate the PSNR/SSIM scores
of the displayed images.

Ablation Study. The hyperparameter σy in Nila affects its reconstruction
quality. In particular, when σy is set to 0, Eq. 10 becomes an identity function
without attenuation effect, and Nila-DC falls back to conventional data consis-
tency operation. To examine the contribution of the proposed Nila-DC operation
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and the optimal settings of σy, we compared using different σy on the clinical
dataset at 6× acceleration with added Gaussian noise of σ = 0.05. As shown in
Fig. 5, setting σy approximately equal to σ resulted in the best reconstruction.
With underestimated σy, the reconstruction yield amplified noise, whereas with
overestimated σy, the reconstruction exhibited over-smoothing. In practice, σy

can be easily estimated from a quick calibration scan, e.g. using zero flip angle
to acquire a few k-space lines, or background areas of zero-filled reconstruction.

4 Conclusion

We identify and address the issue that existing diffusion model-based recon-
struction methods are sensitive to the MRI noise level by introducing a noise
level adaptive data consistency operation for the reverse diffusion process, which
permits robust guidance. The proposed method is comprehensively evaluated to
demonstrate outstanding performance under various experimental conditions.
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