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Abstract. This study investigates utilizing chest X-ray (CXR) data
from COVID-19 patients for classifying pneumonia severity, aiming to
enhance prediction accuracy in COVID-19 datasets and achieve robust
classification across diverse pneumonia cases. A novel CNN-Transformer
hybrid network has been developed, leveraging position-aware features
and Region Shared MLPs for integrating lung region information. This
improves adaptability to different spatial resolutions and scores, ad-
dressing the subjectivity of severity assessment due to unclear clinical
measurements. The model shows significant improvement in pneumonia
severity classification for both COVID-19 and heterogeneous pneumonia
datasets. Its adaptable structure allows seamless integration with various
backbone models, leading to continuous performance improvement and
potential clinical applications, particularly in intensive care units.

Keywords: Position aware feature · Weakly supervised learning · Porta-
bility on heterogeneous dataset · Transformer

1 Introduction

During the COVID-19 pandemic, many studies have been proposed to use retro-
spective analyses to build a database of COVID-19 images and use learning-based
approaches based on them [1–4]. In particular, studies using chest x-rays (CXRs)
have been effective in shaping treatment strategies for patients with COVID-19
pneumonia in intensive care units(ICU) [1].

After the end of the pandemic, these assessment methods will still be needed
in ICUs with severe pneumonia patients. However, despite the considerable ac-
cumulation of data on COVID-19 pneumonia patients, the lack of clear clinical
measures and the subjectivity of raters lead to label noise, which significantly
degrades the performance of learning-based algorithms [3]. In addition, the lack
of standardized criteria for staging and geographic boundaries of severity com-
plicates the integration of data from different datasets. Therefore, a deeper ex-
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Fig. 1. Workflow and structure of multi-region CNN Transformer hybrid networks with
position-aware feature encoding for lung severity classification. (a) Spatial Normaliza-
tion is a preprocess stage which consists of segmentation, transform, and augmentation.
(b) Position-Aware Feature Encoding is performed with CNN, patch embedding, posi-
tional embedding, and transformer. (c) Multi-Region Score Extraction is a process of
extracting ROIs for each task and computing region-specific labels by region shared
MLPs.

ploration of the portability of scores between datasets with different criteria is
needed.

Goal In this study, we explore the potential value of chest X-ray (CXR) data
from COVID-19 patients for addressing the challenge of classifying pneumonia
severity. Our goal is to improve prediction performance on COVID-19 datasets
and achieve robust results in severity classification on heterogeneous pneumonia
data by developing architectures specifically for multi-region classification.

Solution The patterns of ‘haziness’ associated with pneumonia severity can
manifest as characteristics of other structures in different lung regions. In consid-
eration of this, we have adopted a CNN-Transformer hybrid structure to incorpo-
rate the positional information of lung regions. Furthermore, scoring pneumonia
severity is a weakly supervised learning problem due to the lack of clinically de-
fined rules, making the selection of regions subjective based on the dataset and
specific tasks [3]. For this reason, a flexible network without spatial constraints,
suitable for various downstream tasks, is necessary. Our approach utilizes Region
of Interest (ROI) pooling followed by Region Shared Multi-Layer Perceptrons
(MLPs), allowing for the substitution of MLPs in downstream tasks to achieve
both flexibility and superior performance.

Contribution We have achieved two main contributions: i) We proposed
a CNN-Transformer hybrid method for predicting lung severity scores. This
method integrates lung region information and can be flexibly applied to various
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Fig. 2. Normalized CXR image of two lung severity datasets. (a) BrixIA COVID-19
dataset, (b) Inha ICU pneumonia severity dataset; the number in the blue box depict
position index, red font number depict severity label.

downstream tasks. Additionally, this adaptable structure can be seamlessly inte-
grated with various backbones. ii) We explored the potential utility of COVID-
19 data to enhance the performance of pneumonia severity classification models.
As a result, we significantly improved classification performance not only in the
COVID-19 dataset BrixIA but also in pneumonia data from Inha University
Hospital ICU.

The code is publicly available at
https://github.com/bub3690/Multi-Region-Lung-Severity-PAFE

2 Method

The goal of the proposed approach is for a single model to perform learning on
labels with different regions and to also incorporate the positional information
of each location in the lungs. To achieve this goal, we have defined the method
in three stages as depicted in Fig. 1. In the Spatial Normalization(SN) stage,
we normalized the lung positions of all images. In the Position-Aware Feature
Encoding(PAFE) stage, we extracted local features, applied patch embedding,
and added positional embedding to the normalized positions. Then we used the
transformer to reflect the relationships between local features. In the Multi-
Region Score Extraction process, we dynamically extracted ROIs according to
the labels and computed region-specific labels.

2.1 Spatial Normalization

The lung severity classification can be considered weakly supervised learning
because it involves predicting the labeling of lung regions, as shown in Fig. 2,
without explicit labels for lung pixel-level segmentation. To solve this problem,
BrixIA Score network(BS-Net)[3] used Spatial Transformer network(STN)[5] to
align features in the CNN. However, because STN only execute spatial trans-
formations, they lack the capacity, in most cases, to align the feature maps of
a transformed image with those of its original. Consequently, STN is incapable
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of ensuring invariance during the transformation of CNN feature maps[6]. And
also it’s not easy to apply on complex networks like DenseNet[7]. Instead, we
used pre-trained STN to normalize input images. The STN was initially trained
to compute affine transformation matrices using CXR segmentation maps as
input, where the target image was the CXR lung segmentation, and the mov-
ing image was its augmented counterpart. This pre-training allows the STN
to effectively predict affine transformation matrices when presented with new
CXR images[3]. The normalization process, in Fig. 1.a, involves using UNET++
to extract masks[8], and then using the masks as input values for the Spatial
Transformer Network to predict affine transformation matrices for enlargement
and alignment. Through this explicit normalization process, it becomes possible
to determine the positions of features outputted by CNNs, making it easier to
designate ROIs.

2.2 Position-Aware Feature Encoding

In the position-aware feature encoding of the proposed method, the normalized
input image x ∈ RH×W is first passed through the backbone θ1, resulting in the
extraction of local feature F ∈ RC×Ĥ×Ŵ .

F = βθ1(x) (1)

In Fig. 2.a, as indicated by the arrows, lung images exhibit various internal
structures depending on the region. Therefore, relying solely on local feature F
for predictions can lead to prediction errors. Thus, a process is conducted to
incorporate positional information into the local feature F . The local feature
F is reshaped as shown in Equation (2). Perform patch embedding E and 1x1
convolution as shown in Equation (3), then combine with positional embedding
Epos. Patch embedding kernel E, positional embedding Epos serve as learnable
parameters, allowing the model to learn the local lung region from normalized
positions autonomously.

F = [f1, f2, f3, · · · , fl], l = Ĥ × Ŵ (2)

P = [f1E, f2E, f3E, · · · , flE] + Epos, E ∈ R(1·C)×D, Epos ∈ R(l)×D (3)

Furthermore, ROI pooling alone may not adequately represent surrounding in-
formation. Since diseases can metastasize within the same lung, incorporating
surrounding information can lead to better performance. Therefore, as shown in
Equation (4), we input a patch set P that reflects positional information into
the Transformer encoder θ2. Unlike conventional ViT and BERT models, we do
not add a Class token to the patch set [9–11]. This is because, unlike traditional
image classification tasks, we operate in a weakly supervised setting where labels
exist for each region. In this study, only one Transformer Encoder is used.

Z = τθ2(P ) (4)
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Table 1. Comparison of the severity classification performances and Abaltion study
on BrixIA dataset. Our method with Resnet34 achived SOTA Result on BrixIA. The
Consensus Test set underwent consensus among four labelers. * : Published score.

Method Train ACC Test ACC Consensus
Test ACC (MAE)

CXR Clip Resnet50[14] 95.1 51.3 56.2 (0.50)

BS-NET Ensemble* - - 57.1 (0.42)

Ours 61.0 58.5 67.1 (0.35)

Resnet18 w/ SN 58.9 56.9 63.0 (0.39)

w/ PAFE 58.5 58.7 65.7 (0.37)

Resnet34 w/ SN 61.4 58.7 63.0 (0.40)

w/ PAFE 61.0 58.5 67.1 (0.35)

Resnet50 w/ SN 52.1 53.3 56.4 (0.52)

w/ PAFE 51.5 49.1 55.0 (0.55)

Through this process, feature embedding, Z ∈ RD×l is computed. By utilizing
both local features through CNN and long-range relationships through Trans-
former, the advantages of the hybrid structure are expected to be beneficial for
modeling lung severity.

2.3 Multi-Region Score Extraction

To make it scalable for labels with different regions, ROI pooling should be per-
formed without additional parameters or separate models. Thanks to the Spa-
tial Normalization process, feature extraction for the respective label is achieved
through Region pooling without the need for a separate segmentation network.
Region Pooling divides the feature embedding Z ∈ RD×Ĥ×Ŵ into intended areas
of the spatial dimension(Ĥ×Ŵ )[3]. ROI Pooling may not accurately reflect verti-
cal separation as intended by the labeler. Therefore, features learned through the
attention process can be more flexibly incorporated. After ROI Pooling, scores
are computed using Region Shared MLPθ3 . By utilizing a Region Shared MLP,
it is expected to effectively capture global features even with diverse regions in
future downstream tasks.

3 Experimental Result

3.1 Dataset and Training Details

The model was trained and evaluated on the publicly available BrixIA dataset.
Additionally, the pneumonia severity dataset was used to assess the portability
of the model trained on the COVID-19 dataset. This dataset includes patients
with acute respiratory failure due to pneumonia and was collected from the
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Fig. 3. Results on the consensus test set of the BrixIA dataset. (a) MAE per position for
RenNet34 with PAFE method, (b) Sample prediction result. Values within parentheses
indicate the performance improvement achieved after Position-Aware Feature Encoding
compared to with only Spatial Normalization(SN). Red text within the CXR images
represents the labels.

ICU at Inha University Hospital. The BrixIA dataset comprises 4,695 samples
with six regions within a score range of 4 grades. The Inha ICU pneumonia
severity dataset consists of 611 samples with four regions within a score range
of 5 grades. Therefore, the situation with the pneumonia severity classification
dataset is more challenging, and baseline training does not converge without
fine-tuning. Particularly, due to subjectivity in labeling and label noise in both
datasets, training is extremely difficult. To mitigate memorization effects and
overfitting, a slow learning rate of 10−4 and SGD Optimizer with momentum
0.9 were used for 300 epochs[12]. Additionally, contrast/brightness distortion,
random affine transform, sharpness, and rotation augmentation were applied.

3.2 Performance evaluation for BrixIA

To evaluate the severity prediction performance, we used BrixIA’s Consensus
Test, which uses the voting results of four doctors and contains relatively less
label noise, and a test set not included in BrixIA’s training data, which contains
more label noise. Therefore, the consensus test metric is a more reliable dataset
than the validation/test set.

In Table 1, our approach demonstrated the best performance when using
ResNet34 as the backbone with a hybrid structure. BS-NET serves as a baseline
model by incorporating STN and Feature Pyramid Network (FPN) into the
ResNet18 backbone and adding a RetinaNet classifier during ROI pooling [3,
19]. When our method with spatial normalization was applied to ResNet-18 and
ResNet 34, we found a 5.9 improvement in accuracy and a 0.025 reduction in
MAE compared to BS-NET, suggesting that the region shared MLP provided
assistance in generalization performance compared to the RetinaNet classifier
and FPN layer. Moreover, when the proposed method is applied along with
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Fig. 4. T-SNE visualiztion of embedding on BrixIA consensnus testset (a) Visualization
of Resnet34 with only Spatial Normalization, (b) Resnet34 with Position-Aware Feature
Encoding. Colors represent 6 positions of lung and numbers for labels.

spatial normalization, the accuracy is improved by 10.0 and the MAE is reduced
by 0.06 compared to BS-NET. On the consensus test set, the labelers had an
MAE of 0.528[3], indicating that our method was able to find better consensus
on the training dataset despite the presence of larger label noise in the training
data.

ResNet50 showed overall poor performance due to the insufficient amount
of training data used in the experiments compared to the complexity of the
model. Also, CXR-Clip showed a tendency of overfitting and underperformance
compared to ResNet50 pre-trained on ImageNet[13, 14, 18], even though it was
trained on a large chest X-ray dataset with language-image pre-training[15–17].
Many current state-of-the-art methods use large-scale models for training, which
makes them unsuitable for small and medium-sized datasets such as severity
classification.

The position analysis of the proposed method with ResNet34 on the consen-
sus test set also shows a reduction in MAE for all positions (see Fig. 3.a). As
shown in Fig. 3.b, we can see that the tendency to overestimate the severity of
pneumonia at certain locations according to the ‘haziness’ pattern is reduced in
the proposed method as opposed to the comparison method.

Additionally, the t-SNE embeddings of the features at each position demon-
strated more clustering in our proposed method[20], indicating that the PAFE
was effectively trained to more accurately represent the ‘haziness’ features at
each position(See Fig. 4).

3.3 Portability test on Pneumonia Severity Result

We evaluated the model portability from the COVID-19 dataset (BrixIA) to a
heterogeneous pneumonia severity dataset (Inha ICU pneumonia severity dataset),
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Table 2. Portability test on Inha ICU pneumonia severity dataset. The metric is
Accuracy on Test set. The values in parentheses represent the improved accuracy of
the methods that achieved the highest performance using the PAFE.

Method Scratch Fine-tuning Linear-probing

Resnet18 w/ PAFE 27.0 45.3 51.4 (+5.5)

Resnet34 w/ PAFE 32.9 (+0.6) 52.8 (+2.8) 51.2

Resnet50 w/ PAFE 29.7 36.4 29.7

which has differences in the division of regions and severity criteria, as shown in
Table 2. Scratch requires fine-tuning an Imagenet pretrained model, Fine-tuning
involves retraining all model parameters after training on the BrixIA dataset, and
Linear-probing [21] requires freezing all parameters except for the linear layer.
The only modifications needed in the model are creating a new Shared MLP and
adjusting the region pooling scope. When trained on Scratch, the model achieves
an average test accuracy of 26.3%, indicating that it struggles to classify most
of the situations within the 5 classes. On fine-tuning, we observed an average
improvement of approximately 14%, indicating notable learning progress within
the model. In particular, ResNet34 performed the best with a 20% increase in
accuracy, which tended to match the BrixIA dataset, suggesting that the PAFE
works well in transfer learning scenarios. The results of Linear-probing revealed
that sufficiently good embedding were learned when pre-training, with an aver-
age difference of 2% compared to fine-tuning. As a result, the performance of our
model on the Inha ICU pneumonia severity dataset was comparable to that on
BrixIA, showing that the PAFE has effective portability across heterogeneous
pneumonia datasets.

4 Conclusion

We proposed a CNN-Transformer hybrid network for multi region lung sever-
ity classification. By leveraging attention mechanisms on position-aware features
and region-shared MLPs, this model effectively integrates lung region informa-
tion, enabling easy incorporation into various downstream tasks with diverse
label spatial resolutions and offering enhanced flexibility and adaptability. As a
result, the model shows significant improvements on both COVID-19 pneumo-
nia datasets and heterogeneous pneumonia datasets. In addition, the structure of
the adaptive transformer we proposed can be seamlessly combined with different
backbones, allowing us to continuously improve the performance of the model
through the evolution of backbones suitable for small and medium-sized data.
Our next goals are to demonstrate further performance improvements in combi-
nation with different backbone CNNs, and to provide useful clinical applications
through time series analysis of ICU patients.
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