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Abstract. Segmentation of blood vessels in murine cerebral 3D OCTA
images is foundational for in vivo quantitative analysis of the effects of
neurovascular disorders, such as stroke or Alzheimer’s, on the vascular
network. However, to accurately segment blood vessels with state-of-the-
art deep learning methods, a vast amount of voxel-level annotations is
required. Since cerebral 3D OCTA images are typically plagued by ar-
tifacts and generally have a low signal-to-noise ratio, acquiring manual
annotations poses an especially cumbersome and time-consuming task.
To alleviate the need for manual annotations, we propose utilizing syn-
thetic data to supervise segmentation algorithms. To this end, we extract
patches from vessel graphs and transform them into synthetic cerebral
3D OCTA images paired with their matching ground truth labels by sim-
ulating the most dominant 3D OCTA artifacts. In extensive experiments,
we demonstrate that our approach achieves competitive results, enabling
annotation-free blood vessel segmentation in cerebral 3D OCTA images.
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1 Introduction and Motivation

Optical Coherence Tomography Angiography (OCTA) is a high-resolution imag-
ing technique that captures blood vessels by detecting flow-induced temporal
changes of the backscattered signal caused by red blood cell (RBC) movement.
This enables OCTA to provide in vivo, three-dimensional (3D) images of blood
vessels, including minuscule capillaries, in tandem with blood flow information
(when paired with Doppler OCT). The combination of high-resolution, in vivo
vascular images with their corresponding blood flow mapping enables researchers
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to monitor brain vascular dynamics and thus gain valuable, unique insights into
neurovascular disorders such as stroke [3] or Alzheimer’s [25].

The automated analysis of 3D OCTA images typically builds on an initial
blood vessel segmentation stage [22,25], which lays the foundation for advanced
vasculature analysis. Currently, blood vessel segmentation is almost exclusively
performed by supervised deep learning methods, relying on large, manually an-
notated datasets curated by trained experts. In the context of 3D OCTA images,
however, acquiring manual annotations poses an especially cumbersome task due
to dominant imaging artifacts [6,12,30] and the additional complexity introduced
by the requirement of 3D voxel-level consistent annotations of densely connected
capillaries. Furthermore, high variability in OCT system design and acquisition
protocols limits the use of annotated data from different OCT setups, as super-
vised methods fail to generalize across these variations. Therefore, most methods
refrain from analyzing 3D OCTA images and instead focus on 2D en-face pro-
jections, discarding 3D information relevant for a more comprehensive analysis.

In light of the absence of large-scale annotated cerebral 3D OCTA datasets
and to address the challenge of high variability in OCTA image characteristics,
we propose a synthesis pipeline that can be adapted to the data at hand with
little effort to generate a vast amount of synthetic data. To be precise, we first
transform vessel graphs derived from real murine vasculature [24] into voxelized
volumes, maintaining relevant morphological properties. As a second step, we
modify these voxelized volumes by simulating the most dominant 3D OCTA
image acquisition artifacts. This results in realistic, synthetic cerebral 3D OCTA
images paired with their intrinsically matching ground truth labels given by the
unmodified voxelized volumes. Subsequently, we leverage our generated synthetic
dataset to train a segmentation network, which allows us to essentially erase the
need for manual annotations while ensuring accurate segmentation maps.
Our core contributions are summarized in brief as follows:
1. We address the lack of manual annotations by generating a vast amount of

synthetic cerebral 3D OCTA images with matching ground truth labels.
2. We identify projection artifacts, angle-dependent signal loss, and local gran-

ular noise patterns as the most dominant artifacts in cerebral 3D OCTA
images and model them adequately in our simulation.

3. We demonstrate that our simulation-based segmentation approach enables
accurate, annotation-free segmentation of cerebral 3D OCTA images.

4. We tackle high variations in OCT system design and acquisition protocols
by proposing a synthesis pipeline that can be adapted to the data at hand.

5. We open-source our code, synthetic dataset, and manually annotated OCTA
images to serve as a benchmark for cerebral 3D OCTA segmentation.1

2 Related Works

3D OCTA Segmentation: Due to the lack of manual annotations, 3D OCTA
segmentation remains largely unexplored [14]. In the context of the more ex-
1 https://github.com/bwittmann/syn-cerebral-octa-seg

https://github.com/bwittmann/syn-cerebral-octa-seg
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Fig. 1. 3D renderings of our proposed synthetic cerebral 3D OCTA images.

tensively studied retinal OCTA images, some work experimented with 3D-to-
2D segmentation [10,11,27], 2D-to-3D segmentation [28,29], and unsupervised
3D-to-3D segmentation [7], relying on an auxiliary capillary-enhanced modal-
ity. Since cerebral 3D OCTA images differ significantly from retinal 3D OCTA
images (see Suppl., Fig. 8), leveraging techniques tailored to retinal OCTA im-
ages is practically impossible. To address this issue, Stefan et al. [22,25] recently
opted to train a 3D CNN on a manually annotated cerebral 3D OCTA volume
to segment murine cerebral vasculature. However, their CNN is trained on a vol-
ume acquired by their in-house OCT system and, therefore, does not generalize
well to OCTA images from different setups (see Table 1, a). In this work, we
eliminate this issue by proposing to train on synthetic cerebral 3D OCTA images
that can be tuned to match characteristics of OCTA images at hand.

Simulation-Based Blood Vessel Segmentation: Over the last few years,
synthetic images have been successfully utilized to train blood vessel segmenta-
tion algorithms in various 2D imaging modalities [13,20]. In the realm of OCTA,
Menten et al. [15] introduced a physiology-based simulator with the aim of cre-
ating synthetic retinal 2D en-face projections. Building upon this idea, Kreitner
et al. [9] simulated retinal vasculature more accurately, resulting in improved
synthetic retinal 2D en-face projections. However, none of the above methods
are tailored to 3D OCTA images and their unique artifacts. Furthermore, these
methods rely on artificial fractals [13,20] or retinal vessel simulators [9,15] prone
to errors to generate ground truth labels. In contrast, our work is specifically
developed for cerebral 3D OCTA images and relies on real angioarchitectural
properties preserved in vessel graphs derived from murine vasculature.

3 Method

Our proposed method is divided into three stages: volume generation, artifact
simulation, and segmentation (see Fig. 2). The three stages are described below.

1) Volume Generation: The volume generation stage relies on vessel graphs
G := (V, E), comprised of nodes V representative of vessel branching points or
locations with stronger curvature and edges E representative of blood vessels.
While nodes are defined by x-, y-, and z-coordinates, edges are spanned between
two nodes and contain solely information regarding vessel radii r. Therefore,
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Fig. 2. Overview of our proposed method. First, we extract patches from vessel graphs
and transform them into a vast amount of voxelized volumes; second, we transform
the voxelized volumes into synthetic cerebral 3D OCTA images by simulating the most
dominant image acquisition artifacts; and third, we use our synthetic cerebral 3D OCTA
images paired with their matching ground truth labels to train a segmentation network.

blood vessels appear tubular. In this work, we make use of graph representations
of murine whole-brain vascular corrosion casts [24], which accurately preserve
cerebral vasculature (see Fig. 2) all the way down to the smallest capillaries.

We sample the vascular corrosion casts in a grid-like, non-overlapping manner
(see Fig. 4, a) to extract patches, building the foundation for our simulation. We
pay special attention to exclusively sample patches free of artifacts that match
the FOV and the characteristics of vasculature in in vivo cerebral 3D OCTA
images to curate a dataset precisely tailored to real-life applications. Specifically,
we discard patches based on the following criteria: 1) the patch originates from
brain regions impossible to image with modern OCT systems (depth > 3 mm);
2) the patch is sparsely populated (less than 2,000 vessels); and 3) the patch
contains no larger vessels (r > 13 µm). To transform the extracted vessel graph
patches to voxelized volumes, we plot the centerlines of vessels and subsequently
perform binary morphological dilation. We additionally store metadata for each
voxel, being the radius r and the smallest angle to the z-axis θz of the originating
vessel. In total, we generate 1,137 voxelized volumes of isotropic voxel size (2
µm) and shape 250× 250× 250 from six whole-brain vascular corrosion casts.

2) Artifact Simulation: Based on in-depth discussions with renowned experts
in the OCTA field, we identify projection artifacts, angle-dependent signal loss,
and random local granular noise patterns as the three most dominant artifacts
in cerebral 3D OCTA images and simulate them in our generated voxelized
volumes. In the following, we briefly address these artifacts and describe how we
model them in our algorithmic implementation (see Suppl., Algo. 1). It should
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Fig. 3. Slices of real (top) and synthetic (bottom) images. It should be highlighted that
we accurately match 3D OCTA-specific artifacts, resulting in synthetic images almost
indistinguishable from real images. A comparison of intensity histograms revealed sim-
ilar characteristics in the distributions of background and foreground intensity values,
proving the above claim. Analysis of PSNR values painted a similar picture.

be highlighted that our simulation relies solely on a few parameters, which can
be adjusted in minutes to match the characteristics of OCTA images at hand
(see Suppl., Fig. 7). Slices of our generated synthetic cerebral 3D OCTA images
are depicted in Fig. 3, while 3D renderings can be found in Fig. 1.

Projection (or Tail) Artifacts: To accurately capture the depth of blood ves-
sels, OCTA relies on backscattered photons from single scattering events with
RBCs. However, multiple scattering (forward and backward) of an incident pho-
ton with multiple RBCs and deeper tissue layers artificially elongates the photon
path length and thus results in incorrect depth estimates appearing as artifacts
beneath blood vessels (see Fig. 3). These artifacts are referred to as projection or
tail artifacts [6,12] and limit accurate vasculature quantification, as they obscure
the signal beneath large pial vessels and distort the tubular appearance of blood
vessels. We simulate projection artifacts (see Algo. 1, line 16) as an exponential
signal decay modeled by a geometric progression, reflecting the nature of the
multiple scattering process [6]. The amount of involved scattering interactions
and experienced multiple scattering events depends on the local concentration
and distribution of RBCs. Therefore, we derive the length of projection artifacts
and their initial intensities primarily from the radius r of the respective vessels.
We finally add random Gaussian noise onto the simulated tail artifacts to match
the stochastic behavior of multiple scattering more accurately.

Angle-Dependent Signal Loss: In 3D OCTA images, signal from microvessels,
such as capillaries, depends strongly on their angular orientation. Studies have
shown that this can be attributed to the longitudinal elongation of RBCs [19] in
microvessels in conjunction with the orientation dependence of RBC backscat-
tering. To be precise, longitudinally elongated RBCs flowing in parallel to the
incident photon (or the z-axis) present a drastically smaller effective scatter-
ing cross-section to the photon compared to orthogonally flowing longitudinally
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Fig. 4. a) Visualization of sampled patches in a graph representation of a vascular cor-
rosion cast; b) exemplary manual annotation, including regions provided to determine
vessel size-specific segmentation performance (all, small, large).

elongated RBCs. The reduction in effective scattering cross-section thus renders
microvessels running in parallel to the light beam almost invisible in OCTA im-
ages [30]. To account for this angle-dependent signal loss, we exponentially decay
signal depending on how much the angle between the blood vessel and the z-axis
θz deviates from 90◦ (see Algo. 1, line 8). We base the exponential signal decay
on an experimental study from Zhu et al. [30], investigating the relationship
between RBC backscattering ratio and vessel orientation. In our simulation, a
sigmoid function acts as a soft threshold between micro- and macrovessels. The
smooth transition prevents the abrupt emergence of angle-dependent signal loss.

Local Granular Noise Patterns: Further, we aim to match local granular noise
patterns and intensity variations, primarily arising from weak residual and sub-
cellular motion [16], spontaneous neuronal activation [23], and system noise. To
this end, we add Gaussian noise [1] to the synthetic image, followed by Gaussian
smoothing, mimicking the OCT’s point-spread function (see Algo. 1, line 21).

3) Segmentation: The 1,137 generated synthetic cerebral 3D OCTA images
are utilized together with the unmodified, binary voxelized volumes, acting as
ground truth labels (see Fig. 2, blue), to train an off-the-shelf deep learning-based
segmentation network S in a supervised manner. During inference, the trained
segmentation network is applied to real murine cerebral 3D OCTA images.

4 Experiments and Results

To evaluate our method, an expert manually annotated six cerebral 3D OCTA
volumes of isotropic voxel size (2 µm) and shape 160×160×160 over the course
of six months. The OCTA volumes originate from multiple experiments involv-
ing various mice and are acquired by our OCT setup [5]. We split annotations
into three test volumes, one validation volume, and two volumes used to train
the upper bound (see Table 1, footnote). Since 3D OCTA images contain vessels
of various sizes that are affected to different degrees by size-specific artifacts, we
provide regions containing primarily micro- (small) and macrovessels (large) (see
Fig. 4, b) to determine size-specific segmentation performance (see Table 1). We
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Table 1. Quant. results achieved on our three test volumes: a) U-Net trained on real,
manually annotated data; b) traditional techniques; c) U-Net trained on our synthetic
3D OCTA data; d) ablation on simulated artifacts; e) ablation on curvature; f) ablation
on vessel graphs. We report mean and std values based on four random seeds (0 - 3).

Method Data all small large
Dice ↑ clDice ↑ Dice ↑ clDice ↑ Dice ↑ clDice ↑

a 3D U-Net real (ours)* 79.46±0.18 85.29±0.16 74.31±0.08 87.86±0.12 82.54±0.25 70.93±0.21
3D U-Net real ([22]) 54.13±1.37 65.41±1.09 52.78±0.90 67.57±1.16 55.07±2.17 48.50±1.39

b Frangi - 40.84±0.00 53.13±0.00 58.52±0.00 65.96±0.00 19.57±0.00 30.95±0.00
Otsu - 50.62±0.00 33.47±0.00 42.99±0.00 49.34±0.00 51.63±0.00 11.20±0.00

c 3D U-Net syn. (simLTA) 74.83±0.23 80.92±0.13 66.90±0.16 81.27±0.14 80.66±0.36 69.19±0.31

d
3D U-Net syn. (sim) 50.85±0.88 29.98±1.15 54.26±1.77 62.63±2.01 47.33±1.27 9.87±0.99
3D U-Net syn. (simL) 52.68±1.18 46.15±2.15 56.67±0.99 61.34±1.13 47.61±1.59 28.77±2.39
3D U-Net syn. (simLT) 70.38±0.43 72.80±0.73 57.50±0.93 73.60±0.53 79.81±0.30 59.48±0.75

e 3D U-Net syn. (simLTAC) 74.46±0.19 80.84±0.19 66.50±0.21 80.75±0.11 80.33±0.41 69.55±0.75

f 3D U-Net syn. (simSAT
LTA) 60.00±1.28 74.48±1.10 66.77±0.53 80.88±0.19 51.84±3.86 52.92±1.82

∗Upper bound trained on our annotated images. Annotating 2 training volumes consumed ∼2 months.

report Dice and topology-aware centerline Dice (clDice) [21] scores to measure
the algorithms’ ability to accurately preserve tubular appearance and vessel con-
nectivity. We opt for the 3D U-Net architecture [8] to present the segmentation
network S and tune its parameters on the validation volume2.

First, we compare the performance of the U-Net trained on our proposed
synthetic data (see Table 1, c) to the same U-Net trained on real, annotated data
(see Table 1, a) and to traditional, annotation-free segmentation techniques [4,17]
(see Table 1, b). Analysis of results leads to the conclusion that the U-Net trained
on our synthetic data accurately segments vasculature in 3D OCTA images,
achieving competitive results without the need for manual annotations. The U-
Net trained on our synthetic data not only outperforms traditional techniques in
all metrics but also a U-Net trained on a real, annotated volume of shape 154×
154×77 obtained from a different OCT setup [22]. Even though we ensured that
important properties, such as the voxel size and the volume’s intensity range,
match the images acquired by our OCT setup, the U-Net trained on data from
[22] demonstrates poor generalization. By adjusting the simulation parameters
used to generate our synthetic images to data acquired by our OCT setup, we
almost match the performance of the upper bound (see Table 1, footnote). The
observed difference to the upper bound is in line with related works [9,13,20].

Further, we investigate the influence of simulated artifacts by sequentially in-
cluding local granular noise patterns (L), tail artifacts (T), and angle-dependent
signal loss (A) in our synthetic images (see Table 1, d & c). Corresponding 3D
renderings can be found in Fig. 2. We find that our proposed simulated artifacts
result in substantial individual performance increases. Introducing tail artifacts,
which are especially prominent in large pial vessels, e.g., results in a more pro-
nounced increase with regard to large vessels, while angle-dependent signal loss

2 For detailed information, please refer to the code (config.yaml).
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Fig. 5. Qualitative results. The U-Net trained on our synthetic data (right) accurately
segments vasculature, alleviating the need for labor-intensive manual annotations.

mostly affects microvessels and hence boosts segmentation performance on small
vessels. An additional ablation study investigates the importance of curvature
(C) modeled by elastic deformation (see Table 1, e). Even though we hypothe-
size that the difference in curvature (see Suppl., Fig. 6) represents the biggest
remaining mismatch between synthetic and real vessels, additional deformation
does not increase segmentation performance, confirming the validity of modeling
vessels as tubular structures. Finally, we evaluate the influence of the underlying
vessel graphs. To this end, we exchange the vascular corrosion casts originat-
ing from real murine vasculature with simulated arterial trees (SAT) [18] (see
Table 1, f & Suppl., Fig. 6). Given that simulated arterial trees fail to match
morphological properties of cerebral vasculature by, e.g., not containing larger
pial vessels, segmentation performance diminishes, particularly for large vessels.

Qualitative results paint a similar picture (see Fig. 5). However, we hypoth-
esize that the U-Net trained on synthetic data (right) may capture the shape of
vessels more accurately, as our ground truth labels are derived from real vascula-
ture and are, therefore, not susceptible to annotator-specific biases. Specifically,
we find manual annotations of capillaries to be inflated (see Suppl., Fig. 6), which
may explain the discrepancy between quantitative and qualitative results, espe-
cially for small vessels (see Table 1, a & c). Analysis of Fig. 5 may support this
hypothesis, as capillaries segmented by our method (right) appear more slender.

5 Conclusion

In this work, we successfully propose the use of synthetic cerebral 3D OCTA
images for vessel segmentation to overcome the lack of available manual annota-
tions. We simultaneously address the challenge of high variability in OCT system
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design and acquisition protocols, which limits the use of annotated data from
different OCT setups, by proposing a synthesis pipeline that can be adapted to
the data at hand with little effort. Our proposed solution not only saves time
required for the laborious manual annotation process but also erases annotator-
specific biases, as the underlying ground truth of our synthetic images relies
on real vasculature preserved in corrosion casts. We encourage future work to
propose tailored segmentation networks [20], employ graph-level postprocessing
steps [26], and experiment with multi-modal segmentation techniques [2] to opti-
mally combine synthetic and real images for potentially increased performance.
By open-sourcing the code, the synthetic dataset, and the manually annotated
OCTA images, we hope to further push the state-of-the-art, ultimately enabling
large-scale quantitative analysis of disease repercussions on the vascular network.
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