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Abstract. Motion artifacts can compromise the diagnostic value of com-
puted tomography (CT) images. Motion correction approaches require
a per-scan estimation of patient-specific motion patterns. In this work,
we train a score-based model to act as a probability density estimator
for clean head CT images. Given the trained model, we quantify the
deviation of a given motion-affected CT image from the ideal distribu-
tion through likelihood computation. We demonstrate that the likeli-
hood can be utilized as a surrogate metric for motion artifact severity
in the CT image facilitating the application of an iterative, gradient-
based motion compensation algorithm. By optimizing the underlying
motion parameters to maximize likelihood, our method effectively re-
duces motion artifacts, bringing the image closer to the distribution of
motion-free scans. Our approach achieves comparable performance to
state-of-the-art methods while eliminating the need for a representative
data set of motion-affected samples. This is particularly advantageous
in real-world applications, where patient motion patterns may exhibit
unforeseen variability, ensuring robustness without implicit assumptions
about recoverable motion types.

Keywords: Diffusion models · Neural ordinary differential equations ·
Exact likelihood computation · Computed tomography · Motion com-
pensation.

1 Introduction

Spotting motion artifacts in CT images is an easy task. Even an inexperienced
CT reader can differentiate an artifact-free from a motion-affected image. As
observers of the images, we have an implicit understanding of a “good” CT
image. Therefore, we can recognize deviations from that state as, e.g., introduced
through motion. In contrast, neural networks usually need to be presented with
examples of all possible states, i.e., motion-free and motion-affected images to
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grade the intensity of motion artifacts in a CT image [21,12,26]. During training,
this requires a representative labeled data set including images of all possible
expected motion states and their respective motion score.

We aim to emulate the human observer with a network that identifies motion
artifacts after training on clean images only. During the training process, the net-
work learns to model the distribution of clean head CT images. Motion artifacts
can then be quantified by the deviation of a sample from this distribution. In
this work, we evaluate the likelihood of a given, potentially motion-affected CT
image under the distribution of motion-free images represented by the trained
model. Not only does this technique allow for accurate motion artifact quantifi-
cation, it additionally yields enough information for gradient-based optimization
of the underlying motion patterns. This allows for motion artifact compensation
simply by pulling the image closer to the distribution of motion-free samples.

Motion compensation: Motion artifacts occur when the patient moves
during the acquisition of a CT scan. This introduces a mismatch between the
measured CT geometry and the one assumed during reconstruction resulting in
streaks, double edges, and blurring in the final image. Most works for motion
artifact reduction estimate the underlying motion pattern of a specific scan fol-
lowed by a motion-compensated reconstruction. The motion estimate can be ob-
tained from external measurements or attached markers [18,6]. Alternatively, ex-
isting approaches optimize consistency conditions on the projection data [29,2,1]
or evaluate the quality of intermediate reconstructions in the image domain
[14,23,21,12]. Motion compensation using diffusion models has so far only been
explored for MRI [16]. The key disadvantage of consistency-based solutions is
their requirement for non-truncated projection images. Consequently, this work
focuses on the estimation of rigid head motion by iteratively reconstructing the
data and optimizing the quality of these intermediate reconstructions.

Out-of-distribution and anomaly detection: Anomaly and out-of-distri-
bution (OOD) detection are concerned with identifying samples that differ from
a known distribution, mostly the training distribution [19]. These approaches
often reconstruct the data through some sort of bottleneck which captures in-
distribution characteristics, but fails to reconstruct OOD features [8,31,10]. Al-
ternatively, generative networks have been employed as density estimators for
the known distribution for which likelihoods can be evaluated as a proxy for
the similarity of a new sample to the training data distribution [22,28,32]. Such
likelihood-based methods have been proposed using normalizing flow models,
energy-based models, or variational autoencoders. However, for score-based dif-
fusion models, most existing work on OOD or anomaly detection is focused
around reconstruction [27,17,7] rather than likelihood evaluation [9].

Contributions: In this paper, we present a motion correction method that is
solely trained on a data set of clean CT images. The method thus circumvents the
construction of data sets with motion artifacts that represent all possible motion
states. Our contributions are (1) the grading of an image’s motion-affectedness
via the exact likelihood of a diffusion model trained on motion-free images, (2)
the application of a neural ordinary differential equation (ODE) solver [4] in-
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side the likelihood function to calculate the gradient of the likelihood value with
respect to the image, and (3) the application of this differentiable likelihood
function as an objective for state-of-the-art, gradient-based motion compensa-
tion. The source code is available at https://github.com/mareikethies/moco_
diff_likelihood.

2 Methods

2.1 Score-Based Diffusion Models

Score-based diffusion models approximate a data distribution by estimating gra-
dients of the corresponding probability density [24]. Based on a diffusion process,
they transform the data distribution pdata at time t = 0 into an easily tractable
prior distribution pprior at time t = T . For image generation, this process can be
reversed in time and samples from the prior distribution are transformed into
samples from the data distribution by solving a stochastic differential equation
(SDE) backward in time. Interestingly, for each such SDE, there exists a corre-
sponding ordinary differential equation (ODE) which is deterministic and shares
the same marginal distributions pt(x) at any time point t

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt . (1)

This ODE is frequently referred to as probability flow ODE. Using a variance
exploding variant, the drift coefficient is defined as f(x, t) = 0 and the diffusion
coefficient is g(t) = σt

√
2 log σmax

σmin
where σt ∈ [σmin, σmax] denotes the noise level

at time point t. The gradient of the log probability density function ∇x log pt(x)
can be approximated by a time-conditional score network sθ such that sθ(x, t) ≈
∇x log pt(x). We train a smaller version of the originally proposed NCSN++
architecture with ∼ 9.7 × 106 parameters, σmin = 0.01, σmax = 378 (original
settings for the LSUN data set), 105 iterations, a learning rate of 2× 10−4, and
a batch size of 16. Please refer to [24] for details on the training process of sθ.

2.2 Likelihood Computation

Given a trained score network, we can generate a sample x(0) from the data
distribution by integrating Equation 1 backward in time starting from an initial
sample x(T ) from the prior distribution

x(0) = x(T ) +

∫ 0

T

[
f(x, t)− 1

2
g(t)2sθ(x, t)

]
︸ ︷︷ ︸

f̃θ(x,t)

dt . (2)

Now, we can apply the continuous change of variables formula to this implicit
transformation between prior and data distribution to compute the log likelihood

https://github.com/mareikethies/moco_diff_likelihood
https://github.com/mareikethies/moco_diff_likelihood
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of x(0) [24,4,15]

log p(x(0)) = log p(x(T )) +

∫ T

0

[
tr
(
∇f̃θ(x, t)

)]
dt . (3)

Since the trace of the Jacobian tr(∇f̃θ(x, t)) is computationally expensive, we
follow other existing approaches [24,11] and approximate it with the Hutchinson
trace estimator [13]

tr
(
∇f̃θ(x, t)

)
= Eϵ

[
ϵT∇f̃θ(x, t)ϵ

]
≈ 1

M

M∑
m=1

ϵTm∇f̃θ(x, t)ϵm , (4)

which can be evaluated efficiently using automatic differentiation for a limited
number M of random vectors ϵm drawn from the Rademacher distribution. Ul-
timately, we can evaluate the likelihood in Equation 3 for any given data sample
x(0) by solving an ODE forward in time. In [24], Song et al. use an adaptive
step size Runge-Kutta solver of order five from the scipy library and M = 5
realizations of random vectors ϵm to solve the ODE with high accuracy.

2.3 Neural ODEs and Likelihood Target Function

In this work, we use Equation 3 as the objective function in a gradient-based op-
timization problem for CT motion compensation. This entails two implications:
(1) We can not simply utilize any ODE solver, but we require differentiability
through the solver to obtain the gradient of the log likelihood log p(x(0)) with
respect to the image x(0), and (2) we do not necessarily need to solve Equa-
tion 3 to the highest possible precision as long as the loss landscape remains
well-behaved.

To address these requirements, we substitute the conventional ODE solver
with a neural ODE solver3 to ensure differentiability. Instead of differentiating
through the internals of the solver by tracking the computations of the forward
pass, it solves the so-called adjoint ODE for gradient computation [4]. This
ensures differentiable behavior at low memory cost since intermediate results do
not need to be stored. To reduce the computation time, we configure a fixed step
size Runge-Kutta solver of order four with ten steps for the forward ODE and
20 steps for the gradient calculation via the adjoint ODE. Moreover, for each
evaluation of Equation 3, we sample one realization of ϵm and keep it constant
for the gradient computation. Repeated evaluations of the target function use
different random vectors ϵm.

2.4 Motion Compensation

Figure 1 summarizes the proposed algorithm using the differentiable likelihood
function as the target function for motion compensation. First, a score network
3 https://github.com/rtqichen/torchdiffeq

https://github.com/rtqichen/torchdiffeq
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Fig. 1. Overview of the proposed pipeline. After training on motion-free images, the
score model sθ(x, t) is used inside the likelihood target function. For each step of the
gradient descent optimizer, we perform an intermediate reconstruction and evaluate
the gradient of the likelihood function to pull the image closer to the distribution of
clean images seen during training.

is fitted to the distribution of motion-free images which is subsequently applied
inside the likelihood target function in Equation 3. For motion compensation, we
estimate a set of Akima splines describing smooth and non-overshooting motion
trajectories. Each spline parameterizes the values for one of the three rigid mo-
tion parameters (translations tx and ty and rotation r) throughout the scan with
30 evenly distributed nodes yielding 90 free parameters γ(n) in total for the op-
timization problem at step n. The motion parameters are incorporated into the
projection matrices defining the fan-beam geometry by matrix multiplication.
In each iteration of the optimization algorithm, we (1) apply the current state
of motion parameters to the fan-beam geometry, (2) reconstruct the sinogram
based on this trajectory to obtain an intermediate, possibly motion-affected im-
age x(n)(0), and (3) feed this image into the previously introduced likelihood
function to grade its motion-affectedness in terms of a negative log likelihood
value. Next, the solution to the adjoint ODE yields the gradient of the likelihood
value with respect to the intermediate reconstructed image d log p(x(n)(0))

dx(n)(0)
which

is subsequently propagated into the free motion parameters using the Jacobian
of the fan-beam reconstruction operator dx(n)(0)

dγ(n) [25,26]

d log p(x(n)(0))

dγ(n)
=

d log p(x(n)(0))

dx(n)(0)
· dx

(n)(0)

dγ(n)
. (5)

Given the target function’s gradient with respect to the free parameters, the
spline-based motion patterns are optimized using basic gradient descent

γ(n+1) = γ(n) + r(n) · d log p(x
(n)(0))

dγ(n)
(6)

with an initial estimate γ(0) = 0 and an exponentially decaying step size r(n) =
r0 · qn. 40 iterations of Equation 6 are executed with an initial step size of
r0 = 100 and a decay factor of q = 0.97.
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3 Experiments and Results

Our experiments are performed retrospectively on publicly available head CT
scans from the CQ500 data set published under CC BY-NC-SA license [5]. All
terms of use in the end-user license agreement were followed strictly. The score
network is trained on slices from 200 subjects and evaluated on slices from 40
subjects. The motion compensation experiments are performed on slices from
another 40 disjunct subjects. For the score network, we use a reduced-parameter
version of the NCSN++ architecture proposed in [24]. Exemplary generated head
CT samples from the trained model can be found in the supplementary material.

Motion compensation is performed on individual slices. A sinogram is simu-
lated for each slice by forward projecting it onto a trajectory with 360 projections
on a full circle, a source-to-isocenter distance of 785mm, a source-to-detector
distance of 1200mm, and a detector with 700 elements at spacing 0.64mm.
Reconstructions are computed on a grid of 256 × 256 pixels with an isotropic
spacing of 1mm. The initial motion-affected state is obtained by perturbing the
ground-truth reconstruction trajectory with a spline-based motion pattern with
ten nodes and a maximal amplitude of 5mm for translations tx and ty as well
as 5◦ for rotation r. The likelihood-based target function is compared to two al-
ternative objectives. Importantly, both reference methods require substantially
more knowledge about the problem than our proposed method. First, as an
upper performance bound, motion parameters are optimized by computing the
mean-squared error (MSE) to the ground-truth, motion-free reconstruction. This
represents an ideal target function, but requires knowledge of the motion-free
image at optimization time, making it impractical for almost all applications.
Second, following existing approaches [25,21,12], we train a network on a paired
data set of motion-affected and motion-free images to predict the structural simi-
larity index measure (SSIM) given only the motion-affected image. This trained
network is referred to as autofocus target function in the following. Notably, in
contrast to the proposed target function, the autofocus network has seen exam-
ples of motion-affected images during training.

Table 1. Average quantitative values for all investigated metrics comparing the pro-
posed method to the autofocus target function and the initial motion-affected recon-
struction. The ideal MSE target function is excluded since it requires knowledge of the
motion-free ground truth at optimization time and is therefore impractical. The best
value is highlighted in bold font.

RMSE [×0.1] (↓) SSIM (↑) RPE (↓) MAE tx (↓) MAE ty (↓) MAE r (↓)
Init 0.45 0.74 1.98 1.01 1.02 0.98
Autofocus 0.26 0.89 0.94 0.75 0.77 0.44
Ours 0.25 0.91 0.99 0.71 0.72 0.51

Figure 2 illustrates the motion compensation performance of the investigated
target functions. Overall, all methods improve upon the initial motion-affected
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Fig. 2. Comparison of target functions using root mean squared error (RMSE) (↓) and
SSIM (↑) of the motion-compensated images as well as reprojection error (RPE) (↓).
The proposed method achieves similar results as the autofocus method despite never
having seen any motion-affected images during training. The MSE target function can
be considered an upper performance bound since it requires knowledge of the motion-
free image at optimization time which is unrealistic in a clinical workflow.

state. The MSE-based optimization with known ground truth performs best.
This is to be expected and can be regarded as the upper performance bound of
the motion compensation pipeline given an ideal target function. The autofocus
target function and the likelihood-based objective proposed in this work perform
similarly concerning the RMSE and SSIM of the motion-compensated images.
The autofocus method results in a slightly lower RPE, but higher variance and
more negative outliers. These findings are confirmed in Table 1. Additionally,
we compute the mean absolute error (MAE) for each of the three motion pa-
rameters (tx, ty, and r). While the likelihood objective yields a higher MAE for
rotation, it recovers translations slightly better than the autofocus approach.
Figure 3 shows two example slices before and after motion compensation with
the autofocus and likelihood target function. Particularly in the enlarged re-
gions of interest, a clear improvement over the initial motion-affected state can
be observed with fewer streaks and less blur. The compensated image from the
likelihood objective appears slightly smoother than the one from the autofocus
objective, but both successfully restore even fine details such as the bright spot
in the bottom example.

4 Discussion

The proposed method performs on par with the autofocus approach despite
the fact that the autofocus network was trained on motion-affected examples
of different motion patterns and motion amplitudes. In contrast, the proposed
motion compensation method only needs motion-free images. Practically, this
is an enormous difference since multiple data sets of clean CT images are pub-
licly available. On the other hand, creating a paired data set of motion-free
and motion-affected data as needed by the autofocus-type approaches is not
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Fig. 3. Two example slices before and after motion compensation with autofocus and
likelihood objective. A ×3 zoom of a region of interest is shown in the orange frame.

straightforward. The simulation of representative motion patterns that are ap-
plied to the projection geometry for motion perturbation is complex and usually
based on more or less realistic assumptions about the actual motion of patients
in a scanner. As a result, specific motion patterns occurring in practice might
not be covered. The likelihood-based approach is free of such assumptions. We
acknowledge that evaluating the proposed target function and its gradient is con-
siderably slower than the other objectives because it needs to solve two ODEs
per gradient update step which both depend on the score network. Hence, the
forward and backward pass of the score network are evaluated multiple times for
a single update of the motion parameters. This property is inherited from the
diffusion process in score-based modeling which also makes sample generation
slower compared to other generative models. However, speeding up the sampling
is an active area of research and we hypothesize that such approaches could im-
prove the speed of likelihood computation as well [30]. Additionally, we would
like to comment on the findings of existing papers which generally question the
usability of likelihoods for OOD or anomaly detection since they seem to be sys-
tematically biased by the complexity of the data [20,3]. Whereas our proposed
target function is inspired by the ideas of likelihood-based OOD detection, we
only perform a per-sample optimization for motion compensation. Consequently,
we do not require a total separation of motion-free and motion-affected image
distributions as long as the motion-free state of any given individual sample is
graded better than a motion-affected state of the same sample.
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5 Conclusion

In this work, we extend the exact likelihood computation of score-based models,
making it applicable as a target function in gradient-based optimization. Applied
to CT motion compensation, it eliminates the need to simulate examples of
motion-affected images for training. Since we only model the distribution of clean
images, the same target function could be envisioned for other image restoration
tasks without changes posing an exciting direction for future research.

Acknowledgments. The research leading to these results has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (ERC Grant No. 810316). The authors gratefully ac-
knowledge the scientific support and HPC resources provided by the Erlangen National
High Performance Computing Center of the Friedrich-Alexander-Universität Erlangen-
Nürnberg. The hardware is funded by the German Research Foundation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.



10 M. Thies et al.

References

1. Aichert, A., Berger, M., Wang, J., Maass, N., Doerfler, A., Hornegger, J., Maier,
A.K.: Epipolar consistency in transmission imaging. IEEE transactions on medical
imaging 34(11), 2205–2219 (2015)

2. Berger, M., Xia, Y., Aichinger, W., Mentl, K., Unberath, M., Aichert, A., Riess,
C., Hornegger, J., Fahrig, R., Maier, A.: Motion compensation for cone-beam CT
using Fourier consistency conditions. Physics in Medicine & Biology 62(17), 7181
(2017)

3. Caterini, A.L., Loaiza-Ganem, G.: Entropic issues in likelihood-based ood detec-
tion. In: I (Still) Can’t Believe It’s Not Better! Workshop at NeurIPS 2021. pp.
21–26. PMLR (2022)

4. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural Ordinary Dif-
ferential Equations. Advances in neural information processing systems 31 (2018)

5. Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N.G., Venugopal,
V.K., Mahajan, V., Rao, P., Warier, P.: Deep learning algorithms for detection of
critical findings in head CT scans: a retrospective study. The Lancet 392(10162),
2388–2396 (2018), http://headctstudy.qure.ai/dataset

6. Choi, J.H., Fahrig, R., Keil, A., Besier, T.F., Pal, S., McWalter, E.J., Beaupré,
G.S., Maier, A.: Fiducial marker-based correction for involuntary motion in weight-
bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization.
Medical physics 40(9), 091905 (2013)

7. Choi, S., Lee, H., Lee, H., Lee, M.: Projection Regret: Reducing Background Bias
for Novelty Detection via Diffusion Models. Advances in Neural Information Pro-
cessing Systems 36 (2024)

8. Denouden, T., Salay, R., Czarnecki, K., Abdelzad, V., Phan, B., Vernekar, S.:
Improving Reconstruction Autoencoder Out-of-distribution Detection with Maha-
lanobis Distance. arXiv preprint arXiv:1812.02765 (2018)

9. Goodier, J., Campbell, N.D.: Likelihood-based Out-of-Distribution Detection with
Denoising Diffusion Probabilistic Models. arXiv preprint arXiv:2310.17432 (2023)

10. Graham, M.S., Pinaya, W.H.L., Wright, P., Tudosiu, P.D., Mah, Y.H., Teo, J.T.,
Jäger, H.R., Werring, D., et al.: Unsupervised 3D Out-of-Distribution Detection
with Latent Diffusion Models. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. pp. 446–456. Springer (2023)

11. Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.:
FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative
Models. In: International Conference on Learning Representations (2018)

12. Huang, H., Siewerdsen, J.H., Zbijewski, W., Weiss, C.R., Unberath, M., Ehtiati,
T., Sisniega, A.: Reference-free learning-based similarity metric for motion com-
pensation in cone-beam CT. Physics in Medicine & Biology 67(12), 125020 (2022)

13. Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for
Laplacian smoothing splines. Communications in Statistics-Simulation and Com-
putation 18(3), 1059–1076 (1989)

14. Kingston, A., Sakellariou, A., Varslot, T., Myers, G., Sheppard, A.: Reliable au-
tomatic alignment of tomographic projection data by passive auto-focus. Medical
physics 38(9), 4934–4945 (2011)

15. Köthe, U.: A review of change of variable formulas for generative modeling. arXiv
preprint arXiv:2308.02652 (2023)

16. Levac, B., Kumar, S., Jalal, A., Tamir, J.I.: Accelerated motion correction with
deep generative diffusion models. Magnetic Resonance in Medicine (2024)

http://headctstudy.qure.ai/dataset


Learning CT Motion Compensation From Clean Images 11

17. Linmans, J., Raya, G., van der Laak, J., Litjens, G.: Diffusion models for out-
of-distribution detection in digital pathology. Medical Image Analysis 93, 103088
(2024)

18. Maier, J., Nitschke, M., Choi, J.H., Gold, G., Fahrig, R., Eskofier, B.M., Maier,
A.: Inertial measurements for motion compensation in weight-bearing cone-beam
CT of the knee. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 14–23. Springer (2020)

19. Müller, J.P., Baugh, M., Tan, J., Dombrowski, M., Kainz, B.: Confidence-Aware
and Self-supervised Image Anomaly Localisation. In: International Workshop on
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. pp. 177–
187. Springer (2023)

20. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do
deep generative models know what they don’t know? In: International Conference
on Learning Representations (2019)

21. Preuhs, A., Manhart, M., Roser, P., Hoppe, E., Huang, Y., Psychogios, M.,
Kowarschik, M., Maier, A.: Appearance learning for image-based motion estima-
tion in tomography. IEEE Transactions on Medical Imaging 39(11), 3667–3678
(2020)

22. Ren, J., Liu, P.J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., Laksh-
minarayanan, B.: Likelihood Ratios for Out-of-Distribution Detection. Advances
in neural information processing systems 32 (2019)

23. Sisniega, A., Stayman, J.W., Yorkston, J., Siewerdsen, J., Zbijewski, W.: Motion
compensation in extremity cone-beam CT using a penalized image sharpness cri-
terion. Physics in Medicine & Biology 62(9), 3712 (2017)

24. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.:
Score-Based Generative Modeling through Stochastic Differential Equations. In:
International Conference on Learning Representations (2021)

25. Thies, M., Wagner, F., Maul, N., Folle, L., Meier, M., Rohleder, M., Schneider, L.S.,
Pfaff, L., Gu, M., Utz, J., et al.: Gradient-based geometry learning for fan-beam
CT reconstruction. Physics in Medicine & Biology 68(20), 205004 (2023)

26. Thies, M., Wagner, F., Maul, N., Yu, H., Meier, M., Schneider, L.S., Gu, M.,
Mei, S., Folle, L., Maier, A.: A gradient-based approach to fast and accurate head
motion compensation in cone-beam CT. arXiv preprint arXiv:2401.09283 (2024)

27. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion Models for Medical
Anomaly Detection. In: International Conference on Medical image computing and
computer-assisted intervention. pp. 35–45. Springer (2022)

28. Xiao, Z., Yan, Q., Amit, Y.: Likelihood Regret: An Out-of-Distribution Detection
Score For Variational Auto-encoder. Advances in neural information processing
systems 33, 20685–20696 (2020)

29. Yu, H., Wang, G.: Data consistency based rigid motion artifact reduction in fan-
beam CT. IEEE transactions on medical imaging 26(2), 249–260 (2007)

30. Zheng, H., Nie, W., Vahdat, A., Azizzadenesheli, K., Anandkumar, A.: Fast Sam-
pling of Diffusion Models via Operator Learning. In: NeurIPS 2022 Workshop on
Score-Based Methods (2022)

31. Zhou, Y.: Rethinking Reconstruction Autoencoder-Based Out-of-Distribution De-
tection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 7379–7387 (2022)

32. Zisselman, E., Tamar, A.: Deep Residual Flow for Out of Distribution Detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 13994–14003 (2020)


	Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images

