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Abstract. 3D reconstruction of cerebral vasculature from 2D biplanar
projections could significantly improve diagnosis and treatment planning.
We introduce a novel approach to tackle this challenging task by initially
backprojecting the two projections, a process that traditionally results
in unsatisfactory outcomes due to inherent ambiguities. To overcome
this, we employ a U-Net approach trained to resolve these ambiguities,
leading to significant improvement in reconstruction quality. The pro-
cess is further refined using a Maximum A Posteriori strategy with a
prior that favors continuity, leading to enhanced 3D reconstructions. We
evaluated our approach using a comprehensive dataset comprising seg-
mentations from approximately 700 MR angiography scans, from which
we generated paired realistic biplanar DRRs. Upon testing with held-
out data, our method achieved an 80% Dice similarity w.r.t the ground
truth, superior to existing methods. Our code and dataset are available
at https://github.com/Wapity/3DBrainXVascular.

1 Introduction

Digital Subtraction Angiography (DSA) plays an important role in the planning
and treatment of neurovascular diseases providing surgeons with rich informa-
tion about the brain angioarchitecture and hemodynamics [15]. Although 3D
MRA, CTA, or rotational DSA exist, 2D DSA remains the gold standard, due
to its high resolution and clinical availability. DSA is commonly acquired as a
set of biplanar anterior-posterior (AP) and lateral (L) projections of the vascular
network [16,9]. Unlike 3D rotational scanners, which are not suitable for real-
time interventions, and single DSAs, which are limited to simpler tasks, biplanar
DSAs offer an optimal balance of speed, anatomical constraints, cost efficiency,
and reduced radiation exposure. Yet, projection onto 2D images causes vessel
overlap, which makes it difficult for surgeons to confidently localize lesions, un-
derstand their shapes and morphologies, or distinguish between vessels feeding
and draining malformations when the number of 2D views is limited [16,9]. Thus,
3D reconstruction becomes critical.

https://github.com/Wapity/3DBrainXVascular
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Reconstructing cerebral vasculature from biplanar projections is a heavily
ill-posed problem. The dense and intricate arrangements of blood vessels over-
lap and intertwine onto 2D projections, raising major ambiguities. While few
attempts have been made to tackle this challenging problem, most of them focus
on simpler vascular structures, like main coronary arteries, and typically re-
quire manual adjustments for vessel endpoints and bifurcations. To obtain more
complex reconstructions, other techniques rely on pre-existing 3D models of
patient’s vasculature to add constraints or simulate flow [6]. However, the avail-
ability of 3D imaging cannot be guaranteed in clinical practice. A non-learning
approach [7] relies on structural and temporal constraints but requires perfect
tedious semi-manual annotations of segmented vessel centerlines from DSAs,
limiting its use for real-time intervention. Alternatively, various deep learning
techniques have been proposed, including self-supervised approaches [18], Neural
Radiance Fields (NeRF) techniques [12], denoising approach [17] and Genera-
tive Adversarial Networks (GANs) [19]. These models typically aim at learning a
prior to disambiguate DSAs and performing direct prediction. However, none of
these techniques reached a good level of performance when only 2 projections are
available. 3D backprojected volumes offers geometrical cues for reconstruction,
albeit as noisy and ambiguous representations of the actual volume. Unlike the
Denoiser approach [17], we show that a deep learning network can significantly
clarify these volumes by learning priors on vascular patterns, resulting in closely
matching reconstructions.

Contribution. We propose in this paper a novel method for 3D reconstruc-
tion of DSA from only two projections. Our method follows a two step process;
the first step involves a disambiguating reconstructor from back-projected vol-
umes, built upon the Denoiser model. We enhanced the model with improved
architecture and design to tackle the inherent complexities of the task. In the
next step, we refine our initial predictions to find the Maximum A Posteriori
(MAP) estimate given the projections. This refinement occurs through iterative
optimization on a voxel grid, starting from our preliminary estimation of the
vasculature. To improve the vascular network’s structural integrity and connec-
tivity, we introduce a connectivity prior inspired by Ising prior [5]. We conduct
several experiments to benchmark our method against the existing state-of-the-
art and show that our method delivers a high level of reconstruction accuracy,
closely matching the target vasculatures. It marks a significant improvement over
existing techniques, suggesting that as few as two projections might be sufficient
for disambiguating structures for accurate 3D reconstruction. Our method is a
promising approach, paving the way for validation on real data and potential
clinical translation.

2 Method

Our proposed methodology uses a two-step pipeline, as illustrated in Figure 1.
First, a 3D U-Net predicts an initial 3D vasculature from the back-projected vol-
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ume. Second, Maximum A Posteriori estimation is employed to refine the initial
3D model with a newly introduced connectivity loss that encourages closing.

Fig. 1. Our pipeline. Initially, we employ a 3D U-Net to generate a preliminary
vasculature model from back-projected volumes. This model is subsequently refined
through Maximum A Posteriori estimation, with the introduction of a connectivity
prior, aimed at enhancing the model’s structural cohesiveness and closure.

2.1 Disambiguating Reconstructor

Our goal is to address the challenging and ill-posed problem of reconstructing 3D
brain vasculature from biplanar projections (I0, I90), acquired simultaneously on
a bi-plane scanner, available in most interventional radiology suites. To create an
initial 3D model of the brain vasculature, we propose to employ a 3D nnUNet [10]
model denoted as Uθ parametrized by the weights θ. Specifically, we first convert
2D images into a 3D volume Vb using back-projection. Then, the 3D nnUNet aims
to disambiguate the back-projection to create a filtered volume corresponding
to a 3D brain vasculature.

Given the absence of real paired projection-3D volume datasets, we propose
to train our 3D nnUNet model using synthetic projections from ground truth
volumes, which were then converted into back-projected 3D volumes. Specifically,
we model blood vessels within a 3D space, assigning them a binary map with an
intensity value of 1. Then we simulate biplanar projection using Mean Intensity
Projection along rays, corresponding to summing up log attenuation coefficients.
This approach mirrors the accumulation of attenuation that occurs as X-rays
pass through vessels. Finally, we create a backprojected volume V b by extending
these 2D projections into 3D along their original rays. Note that projection and
backprojection are fast and differentiable. Overall, this enables us to create a
paired dataset of back-projected 3D volumes and ground truth GT predictions.
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To optimize parameters θ of our model, we use a combination of Dice and
cross-entropy loss:

L(Uθ(Vb), GT ) = λD · LDice(Uθ(Vb), GT ) + λCE · LCE(Uθ(Vb), GT ), (1)

where λD and λCE are weighting coefficients, Uθ(Vb) represents the predicted
reconstruction for a given back-projected volume Vb and GT denotes the ground
truth 3D vasculature.

2.2 Refinement of 3D Vasculature with MAP Estimate.

Building on our initial prediction, we then proceed to a refinement phase. This
phase focuses on fine-tuning a 3D voxel-grid initialized with our deep learning
output, Vcoarse = Uθ(Vb), to improve 3D reconstruction alignment with the
original projections, as well as connectivity.

MAP Estimation. The process employs MAP estimation, using the pseudo-
probability Vcoarse as our initialization, i.e. V0 = Vcoarse. Our goal is to iteratively
adjust this volume toward a MAP estimate V ∗, achieving an optimal vascula-
ture configuration that matches observed projections while enforcing structural
integrity and connectivity, leading to the following optimization problem:

V ∗ = argmax
V

logP(V |I0, I90) = argmax
V

L(V, I0, I90) +R(V ) (2)

Here, P(V |I0, I90) denotes the posterior probability of the vasculature V given
the observed projections I0, I90, where L(V, I0, I90) and R(V ) respectively repre-
sents the log-likelihood of the current estimate to the observed projections, and
a regularization term that integrates a specially designed connectivity prior.

Connectivity Prior. We introduce a connectivity prior inspired by the Ising
model [5] to enhance voxel interconnectivity and create a more cohesive vascular
network. In the context of vasculature, continuity is expected within vessels, ex-
cept at termination points. The proposed reguarlization term encourages neigh-
boring elements to exhibit similar values for spatial coherence, while allowing
for natural discontinuities at boundaries or edges. To achieve this, we formulate
a loss function that acts as an energy function:

Rc(V ) = − 1

N

W∑
w=1

H∑
h=1

D∑
d=1

∑
x∈N (w,h,d)

Vw,h,d · Vx,

where N = W×H×D and N (w, h, d) represents the set of all 26 neighboring
voxels of (w, h, d). This formula calculates the negative sum of the product of
each voxel with its 26 neighbors within the 3D grid, normalized by the number of
points N = W ×H ×D. Minimizing this energy function encourages connecting
voxels by growing connections and filling in gaps, thus improving structural
integrity and coherence.
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Optimization. The refinement begins with Vcoarse and the optimization aims
to balance data fidelity with the regularization informed by our connectivity
prior. Eq. 2 refines as :

V ∗ = argmin
v

∥∥A0 ◦ V − I0
∥∥
2
+

∥∥A90 ◦ V − I90
∥∥
2
+ λcRc(V ) (3)

where the λc is fixed.
Ai are the projector operators under view i.

3 Experiments and Results

We evaluate our method for our target application, 3D vasculature reconstruc-
tion from biplanar projections. In this section, we introduce our dataset, our
model architecture, and present both quantitative and qualitative comparisons
with state-of-the-art methods. We also include an ablation study to evaluate the
contribution of our regularization prior.

3.1 Dataset and Preprocessing

Voxel-based Binary Vasculature Maps Creation. Given the scarcity of 3D
vasculature segmentations, we developed a comprehensive approach to generate
a substantial dataset for training our deep learning model. Utilizing the publicly
available TubeTK [3] dataset, we processed MRAs from 100 healthy patients,
including 43 with detailed ground truth segmentations. To augment the dataset
further, we trained a nnUNet model on these binary maps, achieving a validation
Dice score of 0.75. Using this model we segmented additional MRAs from the
publicly available IXI dataset [8], which comprises 580 Time-of-Flight (TOF)
MRAs of healthy patients.

Clinical Realism. MRA typically images vessels in both brain hemispheres.
In contrast, DSA is typically used to image one arterial branch at a time. Thus,
DSA has 1) less vascular complexity than MRA and 2) vasculature restricted to
one hemisphere. To mimic this clinical reality, we partitioned MRA images along
the brain mid-plane. As a positive side effect, as we could use both hemispheres
independently, this doubled the size of our dataset from 680 to 1360.

Computational Constraints. Given the substantial size of vasculature vol-
umes, we optimized GPU efficiency by downsampling all volumes to a resolution
of 0.8×0.94×0.94. We employed Signed Distance Fields (SDFs) to maintain the
integrity of thin vessels during downsampling, preserving thin vessel structures
and reducing artifacts, unlike binary images which can cause these structures
to break apart or disappear. We used FastGeodis [1] with truncation at 14 and
level at 0.03. Additionally, by identifying the minimal bounding grid for the
vasculature, we standardized the volumes to 112× 80× 128.
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Model Training. We created Digitally Reconstructed Radiographs (DRRs)
from these volumes to serve as projections. These projections were then used to
generate backprojected volumes as input for our model. These were resampled
to a size of 128×96×128 and Z-Score normalized. Our dataset was divided into
1, 029 training cases and 257 validation cases, split between different patients.

3D Reconstruction. In the test phase, we utilized 70 distinct cases from the
IXI dataset [8] to assess our reconstruction methodology.

3.2 Implementation Details

Disambiguating Reconstructor. Our model, built with PyTorch [14] and tai-
lored for the NVIDIA GeForce RTX 3090 GPU, adopts a nnUNet design with 6
encoding and 5 decoding blocks. It features asymmetric downsampling—5 times
in larger dimensions and 4 times in the smallest—enhancing feature extraction
across scales with channels increasing in the encoder (32, 64, 128, 256, 320, 320)
and decreasing in the decoder (320, 256, 128, 64, 32). Skip connections improve
information flow over simple encoder-decoders. Pooling mainly uses 2x2x2 kernel
sizes, and convolutions are performed with 3x3x3 kernels. Running on a batch
size of 3, the model starts with a 0.01 learning rate, using SGD with Nesterov
momentum, a weight decay of 3e-5, and a polynomial rate scheduler. The loss
function equally mixes dice and cross-entropy. Robustness is improved by ex-
tensive data augmentation, including spatial, noise, and contrast modifications.
The model was trained in under a day for 500 epochs.

Optimization. Our reconstruction optimizes a full-resolution voxel grid, ini-
tialized with the model’s preliminary predictions from backprojected volumes.
It is done on the same GPU using the Adam [11] optimizer at a learning rate
of 1e−1. Optimal weights (λ2 = 1, λc = 0.0002) were determined through grid
search. The process, taking 500 iterations, completes in about 20 seconds, but
excluding connectivity loss cuts it down to 3 seconds.

3.3 Results and Discussion

Baselines. There are very few papers working on this specific task. We com-
pared our approach against simple backprojection, learning-based supervised
state-of-the-art Denoiser [17], voxel-grid optimization without prior, and unsu-
pervised gan-based reconstruction model X2Vision [4]. As no implementation of
Denoiser was available, we reimplemented it.

Metrics. For evaluation, we employed metrics including dice, cldice [13], and
balanced Hausdorff distance (HD) [2]. Compared to dice, cldice provides a bal-
anced view, especially valuing the retrieval of branching patterns and minimizing
the bias towards larger vessels.
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Backprojection Grid X2Vision Denoiser Ours GT

Fig. 2. Visual comparison of 3D reconstruction from biplanar projections
by our model and baselines. Backprojection produces highly noisy and ambiguous
reconstructions. Grid optimization captures only broad structures and non-ambiguous
segments. X2Vision offers slightly clearer reconstructions, capturing the main artery
and some structures but remains fuzzy. The Denoiser reconstructs parts of the vessels
but struggles with connectivity and complex branching areas. In contrast, our recon-
struction closely mirrors the actual data, showcasing better well-defined patterns and
accurately connected, complex vessel networks.

3D Reconstruction from 2 Projections. Figure 2 visually presents our
reconstructions with baseline methods, while Table 1 details our quantitative
results. Our approach significantly outperforms others, closely matching the ac-
tual vessel geometry and enhancing the precision of vessel proximity to targets,
achieving impressive results.

Backprojection retrieves all possible locations of vessel presence, resulting in
very noisy reconstructions with numerous false positives. Direct voxel-grid op-
timization, similar to our refinement process but without proper initialization,
only reconstructs unambiguous areas and misses detailed structural nuances,
leading to many false negatives. This underscores the complexity of reconstruc-
tion without prior knowledge.

Table 1. Comparison with State-of-the-art. Standard deviations in parentheses.

Method Dice ↑ clDice ↑ Balanced HD ↓
Voxel-Grid 0.22(±0.11) 0.16(±0.11) 1.81(±0.26)

X2Vision [4] 0.26(±0.03) 0.20(±0.03) 3.42(±0.46)

Denoiser [17] 0.34(±0.05) 0.28(±0.06) 1.94(±0.24)

Ours (coarse) 0.77(±0.04) 0.75(±0.04) 0.42(±0.09)

Ours (coarse w/ refinement) 0.80(±0.04) 0.78(±0.04) 0.34(±0.09)

X2Vision, which uses unsupervised GANs, struggles to learn the intricate
and sparse nature of vascular structures. This weak prior allows it to identify
the main artery but fails to produce continuous, realistic reconstructions. The
Denoiser model, constrained by its simple architecture and lack of skip connec-
tions, only provides coarse vessel outlines and cannot capture complex vessel
branching, showing limited improvement. We improved the Denoiser model by



8 A. Cafaro et al.

adopting a more complex architecture, including skip connections, using a U-
Net instead of a simple encoder-decoder, and combining dice and cross-entropy
losses. We also introduced data augmentation and a refinement step. These en-
hancements significantly improved performance, leading to reconstructions that
closely match the target vessel structures and branchings. Our refinement step
further enhances the reconstruction. By introducing a MAP estimate refinement
paired with a connectivity loss, we not only improve vessel connectivity but also
refine vessel shapes and fill in missing structures, achieving more precise and
closed vessel representations in the final volume.

Ablation Study. Our ablation study, summarized in Figure 3 and Table 2,
reveals that initial reconstructions may contain gaps, but MAP refinement and
incorporating connectivity loss significantly enhance the quality. MAP refine-
ment aligns structures with projections, while connectivity loss improves cldice
scores by improving capture of vessel centerlines, outperforming grid optimiza-
tion. It clarifies complex junctions and promotes interconnected high-probability
voxels, filling gaps and enhancing structural integrity and coherence.

Coarse Coarse Coarse GT
w/ w/
grid grid and connect

Fig. 3. Visual Ablation Study. The initial results from our model are promis-
ing but exhibit gaps. Refinement with MAP enhances closure and refinement. Adding
the connectivity prior further strengthens these improvements, allowing the model to
closely replicate the intricate complexity of actual vasculature. The yellow shows the
additional closing when introducing the connectivity loss.

Table 2. Ablation Study. Standard deviations are provided in parentheses.

Method Dice ↑ clDice ↑ Balanced HD ↓
Grid 0.22(±0.11) 0.16(±0.11) 1.81(±0.26)

Grid w/ Connectivity 0.29(±0.05) 0.23(±0.05) 2.47(±0.26)

Coarse 0.77(±0.04) 0.75(±0.04) 0.42(±0.09)

Coarse w/ Grid 0.79(±0.04) 0.76(±0.04) 0.35(±0.08)

Coarse w/ Grid + Connectivity 0.80(±0.04) 0.78(±0.04) 0.34(±0.09)
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4 Conclusion and Future Work

We introduced a new method for the highly ill-posed 3D cerebral vascular re-
construction from biplanar DSAs. Our two-step approach starts with a disam-
biguating reconstructor, followed by refinement through MAP estimation and
a connectivity prior. This method marks a notable advancement over existing
methods, suggesting for the first time that two projections could effectively dis-
ambiguate complex vascular structures. Further improvements are expected with
the integration of additional vascular properties. Due to GPU hardware capa-
bilities, our work was limited to using downsampled volumes, restricting our
method to vessels with diameters larger than 1-2mm. Additionally, we used syn-
thetic DSA generated from automatically segmented MRA images due to the
lack of paired MRA/DSA datasets. We are currently assembling such a dataset
to validate our method on real data towards clinical translation.

Acknowledgments. This study was funded in part by the National Institutes of
Health grants: R01EB034223, R03EB033910, and K25EB035166.

Disclosure of Interests. The authors have no competing interests to declare.

References

1. Asad, M., Dorent, R., Vercauteren, T.: Fastgeodis: Fast generalised geodesic dis-
tance transform. Journal of Open Source Software 7(79), 4532 (Nov 2022).
https://doi.org/10.21105/joss.04532, http://dx.doi.org/10.21105/joss.04532

2. Aydin, O.U., Taha, A.A., Hilbert, A., Khalil, A.A., Galinovic, I., Fiebach, J.B.,
Frey, D., Madai, V.I.: On the usage of average hausdorff distance for segmentation
performance assessment: hidden error when used for ranking. European radiology
experimental 5, 1–7 (2021)

3. Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height
ridge traversal for tubular object centerline extraction. IEEE transactions on med-
ical imaging 21(2), 61–75 (2002)

4. Cafaro, A., Spinat, Q., Leroy, A., Maury, P., Munoz, A., Beldjoudi, G., Robert, C.,
Deutsch, E., Grégoire, V., Lepetit, V., Paragios, N.: X2Vision: 3D CT Reconstruc-
tion from Biplanar X-Rays with Deep Structure Prior. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention (2023)

5. Cipra, B.A.: An introduction to the ising model. The American Mathematical
Monthly 94(10), 937–959 (1987)

6. Copeland, A.D., Mangoubi, R.S., Desai, M.N., Mitter, S.K., Malek, A.M.: Spatio-
temporal data fusion for 3d+ t image reconstruction in cerebral angiography. IEEE
transactions on medical imaging 29(6), 1238–1251 (2010)

7. Frisken, S., Haouchine, N., Du, R., Golby, A.J.: Using temporal and structural
data to reconstruct 3d cerebral vasculature from a pair of 2d digital subtraction
angiography sequences. Computerized Medical Imaging and Graphics 99, 102076
(2022)

8. Hammersmith Hospital London: IXI Dataset: Brain Development. https://
brain-development.org/ixi-dataset/

https://doi.org/10.21105/joss.04532
https://doi.org/10.21105/joss.04532
http://dx.doi.org/10.21105/joss.04532
https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/


10 A. Cafaro et al.

9. Haouchine, N., Juvekar, P., Xiong, X., Luo, J., Kapur, T., Du, R., Golby, A.,
Frisken, S.: Estimation of high framerate digital subtraction angiography sequences
at low radiation dose. In: Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part VI 24. pp. 171–180. Springer
(2021)

10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature methods 18(2), 203–211 (2021)

11. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: arXiv
(2014)

12. Maas, K.W., Pezzotti, N., Vermeer, A.J., Ruijters, D., Vilanova, A.: Nerf for 3d
reconstruction from x-ray angiography: Possibilities and limitations. In: VCBM
2023: Eurographics Workshop on Visual Computing for Biology and Medicine. pp.
29–40. Eurographics Association (2023)

13. Paetzold, J.C., Shit, S., Ezhov, I., Tetteh, G., Ertürk, A., Munich, H.Z., Menze,
B.: cldice—a novel connectivity-preserving loss function for vessel segmentation.
In: Medical Imaging Meets NeurIPS 2019 Workshop (2019)

14. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Others: PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In: NeurIPS (2019)

15. Ruedinger, K., Schafer, S., Speidel, M., Strother, C.: 4d-dsa: development and
current neurovascular applications. American Journal of Neuroradiology 42(2),
214–220 (2021)

16. Settecase, F., Rayz, V.L.: Advanced vascular imaging techniques. Handbook of
Clinical Neurology 176, 81–105 (2021)

17. Wu, S., Kaneko, N., Mendoza, S., Liebeskind, D.S., Scalzo, F.: 3d reconstruction
from 2d cerebral angiograms as a volumetric denoising problem. In: International
Symposium on Visual Computing. pp. 382–393. Springer (2023)

18. Zhao, H., Zhou, Z., Wu, F., Xiang, D., Zhao, H., Zhang, W., Li, L., Li, Z., Huang, J.,
Hu, H., et al.: Self-supervised learning enables 3d digital subtraction angiography
reconstruction from ultra-sparse 2d projection views: a multicenter study. Cell
Reports Medicine 3(10) (2022)

19. Zuo, J.: 2d to 3d neurovascular reconstruction from biplane view via deep learning.
In: 2021 2nd International Conference on Computing and Data Science (CDS). pp.
383–387. IEEE (2021)


	Two Projections Suffice for Cerebral Vascular Reconstruction

