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Abstract. Medical report generation (MRG) has great clinical poten-
tial, which could relieve radiologists from the heavy workloads of re-
port writing. One of the core challenges in MRG is establishing ac-
curate cross-modal semantic alignment between radiology images and
their corresponding reports. Toward this goal, previous methods made
great attempts to model from case-level alignment to more fine-grained
region-level alignment. Although achieving promising results, they (1)
either perform implicit alignment through end-to-end training or heav-
ily rely on extra manual annotations and pre-training tools; (2) ne-
glect to leverage the high-level inter-subject relationship semantic (e.g.,
disease) alignment. In this paper, we present Hierarchical Semantic
Alignment (HSA) for MRG in a unified game theory based framework,
which achieves semantic alignment at multiple levels. To solve the first
issue, we treat image regions and report words as binary game play-
ers and value possible alignment between them, thus achieving explicit
and adaptive alignment in a self-supervised manner at region-level. To
solve the second issue, we treat images, reports, and diseases as ternary
game players, which enforces the cross-modal cluster assignment consis-
tency at disease-level. Extensive experiments and analyses on IU-Xray
and MIMIC-CXR benchmark datasets demonstrate the superiority of our
proposed HSA against various state-of-the-art methods.

Keywords: Medical Report Generation · Multivariate Cooperative Game

1 Introduction

Medical report generation (MRG) aims to automatically generate coherent and
informative reports to describe referring examination radiographs [20]. Due to its
high potential in clinics, MRG has attracted extensive attention in recent years.
Existing MRG works mainly adopt the encoder-decoder architecture, where the
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Fig. 1: (a) Method comparison. (b) Our proposed HSA. (Zoom-in for better view)

encoder derives visual features from the input image and the decoder generates
the corresponding report [1, 31, 34, 15]. The key challenge in MRG is how to ac-
curately establish cross-modal semantic alignment between images and reports,
which is crucial for precisely identifying complex diseases [40, 18, 42, 23].

To this end, a bunch of works attempted to establish from case-level align-
ment [38, 17] to region-level alignment [6, 41, 23, 40]. Therein, R2GenCMN [6]
and JPG [41] treated memory vectors as the intermediary of vision and text
modalities to enhance alignment in an end-to-end training manner. CA [23]
compared the current input image with manually constructed normal image
pool to obtain discriminative abnormal features. AlignTransformer [40] aligned
image region-level features with several fixed disease tags from pre-training
labelers [13]. Despite achieving promising progress, two main issues remain:

(1) Existing methods either achieve implicit alignment through end-to-end
training or heavily rely on extra manual annotations and pre-training tools as
summarized in Fig. 1(a). As a result, they often suffered from labor-intensive
efforts or the risk of error propagation. This situation prompts a natural question:
Can we achieve region-level alignment explicitly and adaptively? (2) They
neglect to leverage the high-level inter-subject disease-level alignment. It is
intuitive that unpaired images and reports sharing the same disease could also
be semantically related [37], which is overlooked by most existing MRG works.

Following these premises, as shown in Fig.1(b), we propose Hierarchical
Semantic Alignment (HSA) for MRG in a unified game theory based framework.
Apart from vanilla case-level alignment, we introduce Banzhaf interaction [25]
to achieve both region-level and disease-level alignment. The introduced
game-theoretic interaction could mathematically value possible alignment among
players at different levels, for explicit and adaptive alignment self-supervisedly.

To be specific, to solve the first issue, we formulate the image patches and
report words in a pair as binary game players to perform for region-level align-
ment. Then, we utilize Banzhaf interaction [25] to value possible correspondence
between image patches and report words for explicit and adaptive semantic align-
ment. To solve the second issue, we consider the images, reports and diseases
as ternary game players to perform disease-level alignment. By valuing possi-
ble alignment between images/reports and diseases, we enforce the cross-modal
cluster assignment consistency. We conduct extensive experiments to validate our
framework on two benchmarks, IU-Xray [8] and MIMIC-CXR [14]. Empirical re-
sults and ablation studies show our method achieves significant improvements
in almost all metrics that measure descriptive accuracy and clinical correctness.
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Contributions. In a nutshell, the contributions of this work are three-fold:

– To our best knowledge, this is the first work to bring game theory into
MRG. We present HSA, which utilizes game-theoretic interaction to achieve
cross-modal semantic alignment at disease-, case- and region-level.

– To be specific, the proposed HSA performs different Banzhaf interactions
at different levels correspondingly: image regions and report words (binary
game) at region-level; images, reports, and diseases (ternary game) at
disease-level. These two proposed interactions are unsupervised without
labor-intensive effort, which could achieve explicit and adaptive alignment.

– Extensive experiments and analyses on IU-Xray and MIMIC-CXR bench-
mark datasets validate the effectiveness and superiority of the proposed HSA.

2 Preliminaries

2.1 Background of MRG

Given a medical image I, MRG aims to generate a radiology report Ŷ that de-
scribes findings Y. Typical MRG systems are built upon encoder-decoder frame-
works, which comprise an image encoder and a report decoder.

Image Encoder. In this work, we employ a Vision Transformer (ViT) [9]
as our image encoder, which divides a medical image I into patches, with an
additional [CLS] token to represent the global image feature. Through the image
encoder, we obtain the encoded visual tokens V ∈ Rnv×d and a global image
representation vg, and V will be utilized for report generation.

Report Decoder. We adopt a two-layer standard Transformer decoder [32]
as our report decoder. Technically, a [Decode] token is added to the begin-
ning of V to signal the start while a [EOS] token is to signal its end. Through
the report decoder, the output will be fed to a Linear & LogSoftmax layer
to get the output of target sentences. Eventually, we train model parameters
θ to maximize pθ(Y|I) by minimizing the negative log-likelihood loss: LCE =

−
∑T̂

t=1 log pθ(ŷt|ŷ<t, I), where T̂ is the number of generated words.

2.2 Introduction of Game Theory

To achieve region-level and disease-level semantic alignment, we introduce
the game theoretic interaction to mathematically value possible alignment at dif-
ferent levels. This subsection gives an introduction to game-theoretic interaction.

Notations. Specifically, the multivariate cooperative game consists of a
set of players P with a revenue function ϕ(P). Therein, ϕ maps each team of
players to a real score, which indicates the payoff obtained by P players working
together to complete the task. The core of the game-theoretic interaction is to
measure how much gain is obtained, and how to allocate the total gain fairly.

Interaction Strategy. In the multivariate cooperative game, there are
various interaction strategies available, i.e., core interaction [10], Shapley inter-
action [30] and Banzhaf interaction [25]. In this work, we choose Banzhaf inter-
action as our interaction strategy in MRG due to its balance of computational
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Fig. 2: The architecture of HSA. Beyond case-level alignment, we use Banzhaf
interaction to value possible alignment between different players to achieve
region-level and disease-level alignment. For simplicity, we only draw one
image-report pair and several disease prototypes in disease-level alignment.

complexity and precision [12, 16]. Mathematically, given a coalition {i, j} ⊆ P,
the Banzhaf interaction B({i, j}) for the player {i, j} is calculated as:

B({i, j}) =
∑

C⊆P\{i,j}
p(C)[ϕ (C ∪ {i, j}) − ϕ (C ∪ {i}) − ϕ(C ∪ {j}) + ϕ(C)], (1)

where p(C) = 1
2n−2 is the likelihood of the coalition C being sampled, and P\{i, j}

denotes removing {i, j} from P. B({i, j}) reflects the tendency of interactions
inside {i, j}. The higher value of B({i, j}) indicates that player i and j cooperate
closely with each other. For MRG, we take the matrix B as the alignment label
annotation. We start with a detailed description of our HSA below.

3 Hierarchical Semantic Alignment

3.1 Vanilla Case-level Alignment

Following previous works, we first integrate the well-known case-level align-
ment. To be specific, we utilize a report encoder with a similar architecture to
the image encoder to extract textual tokens T ∈ Rnt×d and a global report rep-
resentation tg. The loss function of case-level alignment can be formulated
as two symmetric temperature-normalized InfoNCE [28] losses between global
image and report representations in one mini-batch:

LCA = −
1

2B


B∑

k=1

log

exp

(
v̂
(k)⊤
g t̂

(k)
g /τ

)
∑B

ℓ
exp

(
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g t̂

(ℓ)
g /τ

) +

B∑
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log

exp

(
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 , (2)
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where B is the batch size; τ = 0.1 is the temperature hyper-parameter; follow-
ing common practice [5], v̂(∗)

g and t̂
(∗)
g are normalized lower-dimensional global

representations of v∗
g and t∗g, respectively.

3.2 Game Theory based Region-level Alignment

Since case-level alignment directly optimizes global representations for an
image-report pair, they may miss important subtle clues. In contrast to prior
works, we propose region-level alignment based on game theory, to achieve
explicit and direct alignment. We first reiterate the players and define the game
score ϕRA, then explain region-level semantic alignment in detail.

From the game-theoretic view, we take M = {vi}nv
i=1 ∪ {tj}nt

j=1 as players.
For the game score, we first define the alignment matrix: A = [aij ]

nv×nt , where
aij = v⊤

i tj represents the alignment score between i-th image patch and j-th
report word. Next, Ã is obtained by applying row normalization of A. For the
i-th image patch, we calculate its maximum alignment score as maxj ãij . Then,
we use the weighted average maximum alignment score over all image patches as
the image-to-report similarity s1. Similarly, we can obtain the report-to-image
similarity s2. The total similarity score can be defined: s = (s1 + s2)/2, which is
considered as the game score ϕRA(M) in region-level alignment.

Intuitively, if an image token has strong semantic correspondence with a
report token, then they tend to cooperate with each other and contribute to the
total game score. For a coalition {vi, tj}, referring to Eq. 1, we can calculate its
Banzhaf interaction score B({vi, tj}). Then, we take normalized B′({vi, tj}) as
soft labels, the loss function of region-level alignment can be formulated as:

LRA = −
1

nvnt

nv∑
i=1

nt∑
j=1

B′
({vi, tj}) log(ãij). (3)

3.3 Game Theory based Disease-level Alignment

We devise disease-level alignment to harness the inter-subject alignment be-
tween images and reports, which imposes constraints on the embedding space,
leading to the incorporation of more high-level semantic information.

Concretely, we first pre-define K trainable cross-modal disease prototypes
C = {c1, · · · , cK}, where ck ∈ Rd. After that, we calculate the visual softmax
probability pv ∈ RK of the cosine similarities between normalized global visual
representation v̂g and cross-modal disease prototypes C, and the text softmax
probability pt ∈ RK of the cosine similarities between normalized global textual
representation t̂g and cross-modal disease prototypes C. Then, we formulate v̂g,
t̂g and C as players in disease-level alignment. pt is treated as the cross-modal
game score between v̂g and C while pv is treated as another cross-modal game
score between t̂g and C. The optimization is achieved by conducting cross-modal
game-theoretic interaction of {v̂g, C} and {t̂g, C} :

LDA =
1

2

 K∑
k=1

B′ ({v̂g, ck}
)
log pk,t +

K∑
k=1

B′ ({t̂g, ck}
)
log pk,v

 , (4)
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Table 1: Main results on IU-Xray and MIMIC-CXR datasets. ‡: our own re-
implementation of baselines. ∗: our results significantly surpass baselines using
paired t-test [39] with p < 0.05. –: missing results from the published work.
Results in gray denote the model using different architectures.

Dataset Method NLG Metrcis CE Metrcis
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr Precision Recall F1

IU-Xray

R2Gen [7] 0.470 0.304 0.219 0.165 0.187 0.371 - - - -

[8]

PPKED[22] 0.483 0.315 0.224 0.168 0.190 0.376 0.351 - - -
R2GenCMN‡ [6] 0.471 0.306 0.222 0.170 0.193 0.374 0.343 - - -
CA [23] 0.492 0.314 0.222 0.169 0.193 0.381 - - - -
CMCL [21] 0.473 0.305 0.217 0.162 0.186 0.378 - - - -
AlignTransformer [40] 0.484 0.313 0.225 0.173 0.204 0.379 - - - -
JPG [41] 0.479 0.319 0.222 0.174 0.193 0.377 - - - -
MSAT [36] 0.481 0.316 0.226 0.171 0.190 0.372 0.394 - - -
MMTN [4] 0.486 0.321 0.232 0.175 - 0.375 0.361 - - -
DCL [17] - - - 0.163 0.193 0.383 0.586 - - -
HSA (Ours) 0.527∗ 0.361∗ 0.268∗ 0.196∗ 0.210∗ 0.405∗ 0.598∗ - - -

CvT-212DistilGPT2 [26] 0.473 0.304 0.224 0.175 0.200 0.376 0.694 - - -
METransformer [35] 0.483 0.322 0.228 0.172 0.192 0.380 0.435 - - -

MIMIC-CXR

R2Gen [7] 0.353 0.218 0.145 0.103 0.142 0.270 - 0.333 0.273 0.276

[14]

PPKED [22] 0.360 0.224 0.149 0.106 0.149 0.284 0.237 - - -
R2GenCMN‡ [6] 0.350 0.214 0.144 0.103 0.139 0.271 0.158 0.334 0.275 0.158
M2TR [27] 0.378 0.232 0.154 0.107 0.145 0.272 - 0.240 0.428 0.308
CA [23] 0.350 0.219 0.152 0.109 0.151 0.283 - 0.352 0.298 0.303
CMCL [21] 0.344 0.217 0.140 0.097 0.133 0.281 - - - -
AlignTransformer [40] 0.378 0.235 0.156 0.112 0.158 0.283 - - - -
MSAT [36] 0.373 0.235 0.162 0.120 0.143 0.282 0.299 - - -
WCL [38] 0.373 - - 0.107 0.144 0.274 - 0.385 0.274 0.294
MMTN [4] 0.379 0.238 0.159 0.116 0.161 0.283 - - - -
DCL [17] - - - 0.109 0.150 0.284 0.281 0.471 0.352 0.373
HSA (Ours) 0.386∗ 0.243∗ 0.165∗ 0.120 0.163∗ 0.288∗ 0.287 0.480∗ 0.357 0.379

CvT-212DistilGPT2 [26] 0.393 0.248 0.171 0.127 0.155 0.286 0.389 0.367 0.418 0.391
METransformer [35] 0.386 0.250 0.169 0.124 0.152 0.291 0.362 0.364 0.309 0.311

where the Banzhaf interaction B′({v̂g, ck}) and B′({t̂g, ck}) can be obtained
using Eq.1 followed by normalization.

Finally, the overall training objective can be calculated as:

L = LCE + λ
(
LCA + LRA + LDA

)
, (5)

where λ is the trade-off hyper-parameter. In particular, HSA is only used during
the training process to improve the representation learning, which can be directly
removed during inference, rendering an efficient and semantics-sensitive model.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our HSA on two widely-used MRG benchmarks, IU-
Xray [8] and MIMIC-CXR [14]. We adopt the settings in [6, 22] to preprocess the
reports for a fair comparison. IU-Xray comprises 3,955 radiology reports and
7,470 chest X-ray images. Following previous works [15, 6, 41], we apply the same
split, i.e. 70%/10%/20%, for training/validation/test set. MIMIC-CXR is the
largest released radiology dataset to date, which contains 377,110 radiographs
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Table 2: Ablation study on the IU-Xray dataset. The BASE in (a) consists of
an image encoder and a report decoder with LCE only. CA: case-level align-
ment. RA: region-level alignment. DA: disease-level alignment. Training
Time in (b) denotes the average training time (s) for an epoch.
(a) Effect of each com-
ponent in the proposed
HSA.

Method BL-4 MTR RG-L CDr

BASE 0.135 0.172 0.364 0.523
BASE+CA 0.174 0.193 0.389 0.567
BASE+CA+RA 0.187 0.204 0.398 0.586
HSA 0.196 0.210 0.405 0.598

(b) Effect of alignment strat-
egy. CS: cosine similarity. GI:
game-theoretic interaction.

Alignment Strategy BL-4 MTR RG-L CDr Training
Time↓

CA - 0.174 0.193 0.389 0.567

RA&DA CS 0.189 0.204 0.401 0.589 155
GI 0.196 0.210 0.405 0.598 161

(c) Effect of the initializa-
tion on image and report
encoders.

ViT SciBERT BL-4 MTR RG-L CDr

✓ ✗ 0.182 0.205 0.393 0.582
✗ ✓ 0.180 0.196 0.381 0.554
✓ ✓ 0.196 0.210 0.405 0.598
✓ ✓ (BERT) 0.192 0.207 0.396 0.593

and 227,835 corresponding reports. We adopt the official splits [40], resulting in
368,960/2,991/5,159 in the training/validation/test set.

Metrics. We adopt natural language generation metrics (NLG Metrics)
and clinical efficacy (CE Metrics) to evaluate HSA. BLEU [29], METEOR [2],
ROUGE-L [19] and CIDEr [33] are selected as NLG Metrics, and we utilize
the MS-COCO caption evaluation tool¶ to calculate scores. For CE Metrics,
we employ CheXpert‖ proposed in [11] to label the generated reports and then
compare with 14 disease labels of the references. Note that F1 in Table 1 refers
to example-based macro F1 following [17].

The reported results are averaged over 5 runs with different seeds. Please
refer to the supplementary material for more implementation details.

4.2 Comparison with State-of-the-arts

As shown in Tab.1, our HSA outperforms the baselines on almost all NLG met-
rics. This verifies the effectiveness of our HSA at three levels. However, on the
MIMIC-CXR, our model is slightly inferior to MSAT (-1.2% CIDEr). This could
be partly explained by MSAT employing a more powerful pre-trained image en-
coder (CLIP vs. ViT in ours) and a more potent attention mechanism (bilinear
attention vs. vanilla attention in ours). Besides, our model achieves competitive
results against previous SOTA methods in terms of CE Metrics. Specifically,
our model achieves the best F1 score of 0.379, increasing by 0.6% compared
to the best baseline. This indicates that our model can produce high-quality
descriptions for clinical abnormalities.

4.3 Quantitative Analysis

We first explore whether each component contributes to the overall perfor-
mance. As shown in Tab.2a, all the proposed case-level alignment (CA),

¶https://github.com/tylin/coco-caption
‖https://github.com/stanfordmlgroup/chexpert-labeler
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Ground Truth: The heart is moderately enlarged.  There is a widespread interstitial abnormality with indistinct 
pulmonary vascularity and upper zone redistribution, most consistent with moderate pulmonary edema.  There is 
no definite pleural effusion or pneumothorax.

Baseline: Lung volumes are low resulting in bronchovascular crowding . There is no convincing evidence for 
pneumonia. However aspiration cannot be excluded . Prominent pulmonary vascularity is not significantly changed 
from. The heart is not enlarged. 

Ours: Prominent pulmonary vascularity is indistinct. In the appropriate clinical setting, Pulmonary edema cannot 
be excluded. The heart is enlarged. No pneumothorax or pleural effusion.

No pneumothoraxPulmonary edema heart is enlarged
Input Image Case of Region-level Alignment Case of Disease-level Alignment

14 pre-defined diseases

Fig. 3: Case study of our proposed HSA and previous SOTA method DCL. At
the top, we show the attention heatmaps of specific descriptions, and the dis-
ease embedding space by t-SNE [24]. We color the diseases and corresponding
keywords in the report involved in this case, while keeping other diseases gray.
Underlined text denotes the generated wrong sentences. (Color figure online)

region-level alignment (RA), and disease-level alignment (DA) benefit the
performance of MRG. More quantitative analyses are presented below.

Effect of Alignment Strategy In Tab.2b, we explore the benefits of different
alignment strategies. Comparing line #1 and line #2, the proposed RA and DA
yield > 0.1 % benefits from CA across four metrics. For the alignment strategy
of RA and DA, our GI alignment significantly outperforms the intuitive CS
alignment. Since the HSA can be removed during inference, we only consider
training time for comparison as shown in Tab.2b. The results indicate minimal
difference with 6s per epoch between the two strategies, whereas our game-
theoretic interaction demonstrates a substantial performance improvement.

Effect of Encoder Initialization In our implementation, we utilize ViT [9]
as image encoder and SciBERT [3] as report encoder considering the domain
gap between medical and generic texts. Not surprisingly, the performances drop
steeply without pre-trained ViT parameters when comparing line #2 and line
#3 (e.g., 0.598 → 0.554 on CIDEr). Moreover, comparison of the line #1, line #3
(w/ SciBERT) and line #4 (w/ BERT) demonstrates the impact of pre-trained
SciBERT parameters and its tokenizer’s sensitivity to medical terminology.

4.4 Qualitative Analysis

In Fig.3, we show a case from MIMIC-CXR to better understand our model. For
visualizing the region-level alignment, we show the three attention heatmaps
between the image clustering center and the report clustering center. It demon-
strates that our proposed HSA can capture accurate fine-grained semantic align-
ment between image regions and keywords. For visualizing the disease-level
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alignment, we present the learned disease embedding space. It is observed that
our HSA can learn reasonable disease-level semantic information. In contrast
to previous SOTA method DCL, our HSA can generate more informative and
meaningful radiology reports by enhancing hierarchical semantic alignment.

5 Conclusion

In this work, we made the first attempt to introduce multivariate cooperative
game theory by formulating image-report as players at different levels. Based
on this, we presented a hierarchical semantic alignment framework termed HSA,
which seamlessly unifies the case-level, region-level, and disease-level
alignment. Extensive experiments and analyses on two benchmark datasets demon-
strated the superiority of our model over state-of-the-art methods.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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