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Abstract. Embryo selection is a critical step in the process of in-vitro
fertilisation in which embryologists choose the most viable embryos for
transfer into the uterus. In recent years, numerous works have used com-
puter vision to perform embryo selection. However, many of these works
have neglected the fact that the embryo is a 3D structure, instead opting
to analyse embryo images captured at a single focal plane. In this paper
we present a method for the 3D reconstruction of cleavage-stage human
embryos. Through a user study, we validate that our reconstructions
align with expert assessments. Furthermore, we demonstrate the utility
of our approach by generating graph representations that capture bio-
logically relevant features of the embryos. In pilot experiments, we train
a graph neural network on these representations and show that it out-
performs existing methods in predicting live birth from euploid embryo
transfers. Our findings suggest that incorporating 3D reconstruction and
graph-based analysis can improve automated embryo selection.

Keywords: 3D Reconstruction · Embryology · Microscopy · Graph Neu-
ral Networks

1 Introduction

In-vitro fertilisation (IVF) is a common treatment for infertility, a condition
which globally affects 1 in 6 people at some point in their lives [36]. It involves
creating and incubating embryos outside the body before transferring them back
into the patient. A key task in the IVF workflow is deciding which embryos to
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prioritise for transfer as not all embryos created during IVF are viable and trans-
ferring multiple embryos at a time increases the risk of pregnancy complications.
Among the simplest and most widely used methods of embryo selection is mor-
phological assessment which is conducted by specialist embryologists under a
microscope [26].

In recent years, the medical imaging community has tried its hand at au-
tomating morphological embryo assessment, the tool of choice: convolutional
neural networks (CNNs). Nevertheless, these approaches have neglected the fact
that embryos are 3D objects. Most CNN-based methods are only applied to im-
ages captured at a single focal plane, ignoring the rich structural information
present in focal planes above and below. In the few works that do consider mul-
tiple (typically up to three) focal planes, 3D structure is only implicitly captured
by the learned convolutional filters [20].

Concurrently, there has been a growing body of work suggesting the spatial
organisiation of cells in a pre-implantation human embryo to be predictive of
its viability from as early as the 4-cell stage [2,13]. Notwithstanding, owing to
the time-consuming nature of assessing the spatial organisation of embryos in
a clinical setting without the use of dyes or advanced optical setups - a task
typically undertaken manually by embryologists - the topic remains relatively
under-explored.

In this work, we present an automated pipeline for the 3D reconstruction
of clinical human embryos imaged through the Hoffman modulation contrast
(HMC) microscopes commonly built into embryo incubators. Through a user
study, we verify that the 3D reconstructions are mostly consistent with embry-
ologist assessments and thus that our system shows promise in enabling future
large-scale investigations into the spatial organisation of embryos. We further
demonstrate how a novel graph-based representation of embryos that explicitly
captures biologically-relevant information on the spatial organisation of an em-
bryo can be derived from 3D reconstructions and be used for embryo selection.
To our knowledge, our approach marks the first application of graph-based deep
learning to human embryology.

2 Related Work

Computer Vision in Embryo Selection The majority of works exploring
vision-based embryo selection have made use of CNNs trained in a supervised
fashion on images captured through time-lapse embryo incubators. Such ap-
proaches have yielded promising results for the prediction of clinical endpoints
such as blastocyst formation [23,6], blastocyst grade [19,20,22], ploidy [10], preg-
nancy [9,4,8] and live birth [3,16]. More recent works have attempted to build on
the performance of these through techniques such as self-supervised pre-training
[21], semi-supervised learning [9,27] and transformer-based approaches [22]. Nev-
ertheless, although most incubators are capable of capturing the embryo across
various focal planes (thereby providing some 3D information), most works opt
to work with one or a few central focal planes. To our knowledge, only a few
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works have considered explicitly modelling and working with the 3D spatial or-
ganisation of human embryos [11].

3D Reconstruction in Live-Cell Imaging Microscopic imaging of live spec-
imens presents several challenges, especially when said live specimens are clini-
cally relevant such as in clinical microendoscopy and embryology. Typically, 3D
reconstruction is conducted using confocal and light-sheet microscopy on stained
or autoflourescent samples [7]. These methods aim to mitigate the impact that
light scattering has on images, namely the presence of out-of-focus light and thus
3D reconstruction of specimens captured with these modalities are relatively
straightforward to reconstruct by segmentation and registration [18]. In settings
such as clinical embryology, however, confocal (and, to a somewhat lesser extent,
light-sheet microscopy), are infeasible due to expense, the toxicity of stains, as
well as the risk of phototoxicity to the live specimens [17,7]. As a result, focal
stacks captured with conventional light microscopy techniques such as phase
contrast and HMC microscopy are commonly used in clinical settings, as their
safety is more well-established [17]. 3D reconstruction from such modalities is
complicated by the impact of light scattering. Many existing methods attempt
to address this challenge by identifying in-focus regions of the image through
techniques such as texture analysis [11]. Other methods have utilised forward
models describing the physics of the optical setups, casting 3D reconstruction as
an optimisation problem recovering the input volume that formed the image [38].

Graph Neural Networks in Histopathology Over recent years, graph neural
networks (GNNs) have become increasingly adopted in computational histo-
pathology. A key driver from this stems from the necessity of capturing long-
range context when modelling tissue architecture in tasks such as whole-slide
imaging [32]. To date, GNNs have been used across multiple tissue types (such
as for breast [25,28,29], gastointestinal [33,34,35] and lung [1] cancers) and scales
(ranging from individual cells [39,33] to whole regions of tissue [25,29]). Across
most of these works, graphs are constructed with nodes representing histological
points of interest (such as cells or tissues), and edges representing potential
interactions between nodes. In practice, edges are typically created according
to locality criteria [25,34,29]. To our knowledge, however, no prior works have
applied graph-based deep learning approaches to human embryology.

3 Methods

In this section, we introduce our methodology for producing 3D reconstructions
from embryo focal stacks. We then outline how these reconstructions can be used
to construct biologically-grounded graph representations of embryos to predict
clinical outcomes. An overview of our methods can be seen in Figure 1.

Cell Segmentation We consider an arbitrary HMC focal stack comprising 11
evenly spaced focal planes. We use a Mask-RCNN [15] with a ResNet-50-FPN
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Fig. 1. Summary of our methodology. (a) We start by performing cell segmentation
on a focal stack. (b) From these segmentations, we generate a 3D reconstruction. (c)
From the 3D reconstruction, we compute intercellular contacts and (d) derive a graph
representation. (e) We predict the embryo’s fate using a GNN.

backbone to detect individual cells with the class label corresponding to the fo-
cal plane at which the cell is most in-focus. The network’s input layer accepts
an 11-channel 400× 400 image where each channel represents a focal plane. We
use the standard Mask R-CNN training setup and multitask loss defined in [15].
We introduce a simple yet, to our knowledge, novel non-maximum suppression
(NMS) algorithm for focal stacks which we use to post-process detector outputs
and reduce duplicate detections. The algorithm, which we shall refer to as Stack
NMS, can be found in Algorithm 1. The key difference between our method and
the classical NMS algorithm is that we introduce the possibility that two over-
lapping detections may indeed be valid (for example, representing cells that are
directly on top of each other). In particular, we only suppress a detection if an
overlapping detection of higher confidence is within some window size ϕ.

3D Reconstruction A mesh is generated for each detected cell, given several
shape priors. First, we assume that cells are roughly the same dimensions along
each axis. In particular, we take the radii of the cells along the depth axis to
be the mean of their width and height in the most in-focus plane. Second, we
assume that the cross section of the cell remains the same at each focal plane
bar its scale. We can thus generate meshes for each blastomere in the following
manner (a helpful diagram of the process can be found in the Supplementary
Materials):

1. Convert the outline of the blastomere’s equatorial plane into a polygon and
place the polygon at depth d corresponding to the depth at which the equa-
torial cross section is most in-focus.

2. Create copies of the outline polygon and place them above and below the
equatorial focal plane at regular fixed intervals within the range [d− w+h

4 , d+
w+h
4 ] where w and h are the width and height of the blastomere’s equatorial

cross section respectively.
3. Scale each polygon such that the polygon at depth dcurrent is scaled by a

factor of
√
1− 16(d−dcurrent

w+h )2.
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Algorithm 1: Stack NMS

Input: Predicted bounding boxes bk ∈ Bpred, predicted depths dk ∈ Dpred,
prediction confidences ck ∈ Cpred, intersection-over-union threshold η,
confidence threshold ζ and window size ϕ.

Output: A set of indices of bounding boxes to be suppressed Osup.
1 Initialise Osup := {k | ck ≤ ζ, ck ∈ Cpred}.
2 Compute sets Oi ∈ O such that ∀j, k ∈ Oi, IoU(bj , bk) > η,

∀j ̸= i, k ∈ Oi ⇐⇒ k /∈ Oj and ∀k ∈ Bpred∃i, k ∈ Oi.
3 for i = 1..|O| do
4 if |Oi| = 1 then
5 continue
6 else
7 for j ∈ Oi do
8 w := {ck | |dj − dk| ≤ ϕ, k ∈ Oi}
9 if cj ̸= max(w) then

10 Osup := Osup ∪ {j}
11 end

12 end

13 end

14 end
15 return Osup.

4. Generate triangles between the adjacent polygons (this is straightforward as
there are an equal number of vertices in each outline mesh).

Biologically-Grounded Graph Representations We consider an undirected
graph G = ⟨V,E⟩, representing a particular cleavage stage embryo. Each vi ∈ V
represents a set of features associated with the ith cell in the embryo. Each edge
eij ∈ E represents intercellular contact between cells i and j.

In this work, node features vi comprise both features pertaining to a cell
(namely its width and height) as well as graph-theoretic features (in particular,
the degree of the node). The presence of intercellular contact between two arbi-
trary cells i and j is assessed by scaling the mesh of each cell by a factor of 1.05,
centered at the center of the cell. If the scaled meshes overlap, we assume there
is cell contact and create edge eij .

We make predictions on the fate of an embryo from its graph representation
using a graph isomorphism network (GIN) [37]. Node embeddings xi are obtained
through three rounds of GIN convolutions xi := hθ(xi+

∑
j∈N (i) xj) where N (i)

denotes the set of neighbors of node i and hθ is a perceptron with a single hidden
layer parameterised by θ. Global mean pooling is performed across the whole
graph to aggregate node embeddings into a single vector which is then passed
through a single linear layer. Further architecture details can be found in the
Supplementary Materials.
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4 Experiments

Experiments were performed on de-identified private embryo imaging datasets
derived from three IVF clinics across three countries. The dataset consisted
of HMC focal stacks consisting of 7-11 focal planes captured on Embryoscope
time-lapse incubators between 2018 and 2021. Further details on the specific
data used in each experiment can be found in the Supplementary Materials.
Focal stacks were resized to dimensions 400 × 400. Contrast limited adaptive
histogram equalisation was applied to each focal stack and a circular mask was
applied to hide the edges of the microscope well. Super-Focus standardisation
[12] was applied where appropriate.

All experiments were implemented using PyTorch (v1.13.1) and PyG (v2.2.0)
on a Ubuntu 20.04 machine with an NVIDIA Titan X GPU. Mesh generation
was conducted in the Unity engine (v2021.3.7f1). Further details on training and
hyperparameter search for each experiment can be found in the Supplementary
Materials. Code is available at https://github.com/chlohe/embryo-graphs.

Evaluation of Cell Segmentation We evaluate the performance of our cell
segmentation model, along with our proposed NMS algorithm. We use a dataset
of 498 cleavage-stage embryos annotated by a team of embryologists and re-
searchers. The annotators were instructed to identify cells and large fragments
in the stacks and to annotate them on the focal planes they were most in focus.
Five instances of the segmentation model were trained for 2000 epochs (∼56
hours) each using a 5-fold cross-validation setup.

We benchmark our NMS algorithm against the classic NMS algorithm [15]
and Crowd NMS [24], an NMS algorithm specifically developed for embryo cell
segmentation. Hyperparameters for the NMS algorithms were calibrated by av-
eraging their performance when applied to the outputs of the different segmen-
tation model instances on a separate dataset consisting of 92 focal stacks. The
final segmentation model-NMS pipeline was tested on an independent testing set
consisting of 62 focal stacks, once again making use of the different segmenta-
tion model instances. The quality of segmentation was evaluated using the Dice
score, while the performance at detecting cells was evaluated using the precision,

Table 1. Performance comparison between non-maximum suppression (NMS) algo-
rithms averaged over 5-fold cross validation. Standard deviations are in parentheses.
Highest performances for each metric are highlighted in bold. An asterisk (*) is used to
denote that a given result is significantly higher than the next best method (p < 0.05).

Method Precision Recall F1

Classic NMS 0.93 (0.01) 0.81 (0.01) 0.87 (0.01)
Crowd NMS 0.87 (0.07) 0.84 (0.02) 0.86 (0.01)
Stack NMS 0.93 (0.01) 0.89 (0.01)* 0.91 (0.01)*

https://github.com/chlohe/embryo-graphs


Embryo Graphs 7

Fig. 2. Examples of 3D reconstructions from the user study. For each embryo, a central
plane from the original focal stack is provided along with a top-down and side views.
Issues raised by the embryologists are circled. The leftmost embryo received a mean
score of 4.4 with no issues identified. The second embryo from the left received an mean
score of 3.7, with embryologists noting an incorrectly shaped cell. The third embryo
from the left received a mean score of 3.7 and contained a duplicated cell. The rightmost
embryo received a mean score of 4.1, though embryologists noted a hallucinated cell.

recall and F1 metrics. Two-tailed unpaired t-tests at a 95% confidence level with
Bonferroni correction were used to compare methods for each metric.

Our segmentation model paired with Stack NMS (ϕ = 1) achieved a Dice
score of 0.944 ± 0.001 (M±SD). Results on cell detection can be found in Table
1. Our method outperformed the others in terms of recall and F1 score, surpass-
ing the purpose-built Crowd NMS in recall while retaining high precision.

Evaluation of 3D Reconstruction We evaluate the quality of 3D reconstruc-
tions through a user study involving 9 embryologists with a total of 131 years of
clinical experience between them. 3D reconstructions of 15 cleavage-stage em-
bryos captured between 35 and 70 hours post insemination were evaluated by
individual embryologists using the following scale: 1 (very poor - unrecognisable
from focal stack), 2 (poor - major issues such as missing cells), 3 (ok - minor
issues such as duplicated cells), 4 (good - only very minor issues), 5 (perfect).
The Sketchfab platform was used to display the 3D models and responses were
collected through Google Forms. Embryologists were also asked to note down
issues they observed with the reconstructions. We considered a reconstruction
to have a certain issue if at least a third of the embryologists brought it up.

The reconstructions received a mean rating of 3.8± 0.4 (M±SD) indicating,
for the most part, only minor issues with reconstructions. The most common
issues raised were incorrect cell shapes (N=6), duplicate cell detections (N=5),
missing large fragments (N=3) and non-duplicate false positive detections (or
“hallucinations”, N=3). On closer inspection of the comments, many reports of
incorrect cell shapes stemmed from certain cells seeming too large. This may have
been a side-effect of the visualisation platform, which used a perspective camera
model that may not completely recapitulate microscope optics which may look
more like an orthographic projection - a matter that should be considered in
future work. An illustration of this phenomenon can be found in the Supplemen-
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tary Materials. Moreover, though our NMS method outperformed the others in
terms of F1 score, the results of our user study indicate that there is still much
room for improvement on NMS and indeed segmentation in this challenging set-
ting. In light of these results, we add an additional layer of human-in-the-loop
validation to all subsequent experiments, removing any false positive detections
manually.

Predictive Performance Comparison We apply our GNN-based approach
to the task of predicting whether an euploid stage human embryo results in a live
birth using information available at the 8-cell stage. This is a task of significant
clinical interest, as it is not yet fully understood why embryos deemed chromo-
somal normal do not always lead to live births [5]. Our method was evaluated
against three baseline approaches: a ResNet-50 CNN [14] (used as the basis for
many other works in the embryo selection literature [9,31]), logistic regression
on the KIDScore D3 [30] (an established commercially-available embryo quality
scoring algorithm based on the timing of cell divisions) and logistic regression on
the total number of cell contacts in the embryo [13]. The dataset used comprised
data from 80 euploid embryo transfers and included focal stacks captured at the
start of the 8-cell stage along with expert annotations of the cell division timings
necessary to calculate the KIDScore D3.

All methods were benchmarked using 10-times-repeated 5-fold cross valida-
tion. While the GNN was trained for 5 epochs (< 1 minute) from scratch, the
CNN was trained for 20 epochs (< 1 minute) using transfer learning with weights
pre-trained on ImageNet. The Adam optimizer was used to fit both models.
The total number of cell contacts in the embryo was computed from the same
graph representations used by the GNN. To determine the statistical significance
of performance differences, we conducted two-tailed unpaired t-tests at a 95%
confidence level with Bonferroni correction, comparing the highest-performing
model for each metric against the next best-performing model.

The results of the performance comparison can be seen in Table 2. Our
method outperformed the baselines on accuracy, precision, recall and F1 score,
and matched the total contacts baseline in terms of AUC. Our results suggest

Table 2. Performance comparison between methods averaged over 10-times repeated
5-fold cross validation. Standard deviations are given in parentheses. Highest perfor-
mances for each metric are highlighted in bold. An asterisk (*) is used to denote that
a given result is significantly higher than the next best method (p < 0.05).

Method Accuracy Precision Recall F1 AUC

CNN 0.52 (0.10) 0.55 (0.10) 0.71 (0.18) 0.61 (0.10) 0.50 (0.10)
KIDScore D3 0.56 (0.07) 0.58 (0.42) 0.14 (0.11) 0.21 (0.14) 0.53 (0.07)
Total Contacts 0.62 (0.12) 0.59 (0.18) 0.57 (0.18) 0.57 (0.14) 0.62 (0.12)
GNN (Ours) 0.64 (0.09) 0.64 (0.08) 0.80 (0.15)* 0.71 (0.09)* 0.62 (0.09)
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that graph representations in embryology may prove a powerful tool, especially
with smaller datasets. Moreover, our approach may also be more interpretable
than CNN-based systems given the strong biological priors introduced by the
graph representation.

5 Conclusions and Future Work

In this paper, we propose a technique to create 3D reconstructions of early-stage
human embryos without the need for invasive procedures. We demonstrate that
these reconstructions can be used to derive biologically-grounded graph repre-
sentations of embryos. In initial experiments on a small dataset, a GNN trained
on these representations outperforms existing techniques. Beyond its direct rel-
evance to clinical embryology, our technique offers a pathway to gather spatial
data from embryos in clinical settings. This could substantially augment the pool
of data available for fundamental research into embryo development and cell fate
determination making our non-invasive approach a potentially worthwhile ad-
vancement.

Disclosure of Interests. Chloe’s PhD is supported by Apricity and the Well-
come/EPSRC Centre for Interventional and Surgical Sciences. Cristina is founder
of Avenues, co-founder of Ovom Care, and chief clinical officer of Fairtility.
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