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Abstract. Retinal image segmentation plays a critical role in rapid dis-
ease detection and early detection, such as assisting in the observation
of abnormal structures and structural quantification. However, acquir-
ing semantic segmentation labels is both expensive and time-consuming.
To improve label utilization efficiency in semantic segmentation models,
we propose Diffusion-Enhanced Transformation Consistency Learning
(termed as DiffTCL), a semi-supervised segmentation approach. Initially,
the model undergoes self-supervised diffusion pre-training, establishing
a reasonable initial model to improve the accuracy of early pseudo-
labels in the subsequent consistency training, thereby preventing er-
ror accumulation. Furthermore, we developed a Transformation Con-
sistency Learning (TCL) method for retinal images, effectively utilizing
unlabeled data. In TCL, the prediction of image affine transformations
acts as supervision for both image elastic transformations and pixel-level
transformations. We carry out evaluations on the REFUGE2 and MS
datasets, involving the segmentation of two modalities: optic disc/cup
segmentation in color fundus photography, and layer segmentation in
optical coherence tomography. The results for both tasks demonstrate
that DiffTCL achieves relative improvements of 5.0% and 2.3%, respec-
tively, over other state-of-the-art semi-supervised methods. The code is
available at: https://github.com/lixiang007666/DiffTCL.

Keywords: Retinal Image Segmentation · Diffusion · Transformation
Consistency Learning · Semi-Supervised.

1 Introduction

Deep learning has made significant progress in image segmentation [19,22,6],
but traditional deep learning segmentation models still require a large number
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of segmentation labels for training. This challenge is particularly acute in the
processing of retinal images, such as color fundus photography (CFP) [5] and
optical coherence tomography (OCT) images [12]. Manually annotating these
complex-structured retinal images requires highly specialized medical knowledge
and a significant amount of time. Therefore, it is crucial to improve the efficiency
of label utilization.

Semi-supervised learning methods can achieve segmentation using a small
number of labels. Mean Teacher (MT) [20] enhances temporal ensembling by av-
eraging model weights, enhancing accuracy, and enabling efficient training with
limited labeled data. Uncertainty-Aware Mean Teacher (UA-MT) [24] improves
MT by incorporating uncertainty awareness, specifically targeting left atrium
segmentation. Li et al. [11] introduced SASSNet, which tackles medical image
segmentation by enforcing a geometric shape constraint, leading to improved
shape estimation. Chen et al. [4] presented CPS, implementing consistency reg-
ularization and achieving state-of-the-art (SOTA) performance in semantic seg-
mentation. Yang et al. [23] proposed UniMatch, redefining consistency frame-
works and expanding perturbation strategies, thereby outperforming existing
methods on multiple benchmarks. These methods provide innovative approaches
to semi-supervised learning and medical image segmentation, emphasizing con-
sistency and uncertainty while introducing novel perturbation techniques.

Semi-supervised learning has been widely applied in medical image segmenta-
tion tasks, effectively addressing the challenge of limited labeling in retinal image
data [18,12]. Notably, pre-training the model can enhance the representation of
image features, thereby enhancing the model’s performance on datasets with
limited labels [16]. Pre-training not only helps the model avoid overfitting, par-
ticularly in scenarios with limited labels, but also significantly accelerates the
model’s convergence [1]. However, a frequently overlooked issue is that many
semi-supervised learning models lack an excellent pre-training step.

To further enhance label utilization efficiency and address insufficient pre-
training, we propose a Diffusion-Enhanced Transformation Consistency Learn-
ing (DiffTCL) for retinal images. The main contributions are as follows: 1) For
the semi-supervised setting of retinal image segmentation, we propose for the
first time Transformation Consistency Learning (TCL). The prediction of image
affine transformations serves as supervision for both image elastic transforma-
tions and pixel-level transformations, efficiently utilizing unlabeled data; 2) We
design self-supervised diffusion pre-training, which provides a reasonable initial
model, improves the accuracy of early pseudo-labels in TCL, and avoids error
accumulation; 3) DiffTCL has been applied to datasets of two modalities, CFP
and OCT, showing relative performance improvements of 5.0% and 2.3%, re-
spectively, compared to other SOTA methods.

2 Proposed method

The implementation of DiffTCL is illustrated in Fig. 1, consisting of two main
steps. The first step involves self-supervised diffusion pre-training of the entire
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network. The second step employs the proposed Transformation Consistency
Learning (TCL) method, using the prediction of image affine transformation
(AT) as supervision for both image elastic transformation (ET) and pixel-level
transformation (PT) [21], thereby effectively utilizing unlabeled data. Addition-
ally, it conducts supervised training in parallel with a limited amount of labeled
data. In TCL, to ensure consistency with PT, inverse transformations are ap-
plied to the outputs of the AT and ET branches. Furthermore, we refine the
pseudo-labels generated by the AT branch to improve semi-supervised learn-
ing performance. DiffTCL enhances the model’s understanding of the intrinsic
properties of images, such as shape, texture, and edge information.

Fig. 1. Overview of our DiffTCL.

2.1 Network architecture

DiffTCL is not limited to a specific architecture. We use DeepLabV3+ as the base
network [3], with the widely used ResNet50 serving as its encoder. The initial
weights of ResNet50 are trained on ImageNet-1k [17]. Compared to DeepLabV3,
DeepLabV3+ incorporates an additional decoder module that enhances the in-
tegration of low-level and high-level features, thereby improving the accuracy
of segmentation boundaries. Furthermore, the included Atrous Spatial Pyramid
Pooling (ASPP) module [3] solves the challenge of multi-scale representation.
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2.2 Diffusion-Enhanced pre-training

Recently, there has been a resurgence of interest in denoising autoencoders [9],
particularly with Denoising Diffusion Probabilistic Models (DDPMs) [8] gaining
prominence. The primary distinction between DDPMs and traditional denoising
autoencoders is that DDPMs are specifically trained to remove Gaussian noise
introduced into images, with this noise originating from a Gaussian distribution
of varying variances. Conversely, traditional denoising autoencoders are generally
designed to eliminate Gaussian noise of constant variance. Additionally, DDPMs
focus on training an autoencoder to predict noise patterns instead of directly
reconstructing the clean image.

Inspired by DDPMs, we investigated the effectiveness of representations learned
through diffusion pre-training for retinal image segmentation tasks. Given an in-
put image x and a scalar noise level γ, a noisy image x̃ is generated by adding
Gaussian noise ϵ:

x̃ =
√
γx+

√
1− γϵ, ϵ ∼ N (0, I), (1)

where x is attenuated by √
γ, and ϵ is attenuated by

√
1− γ to ensure that the

random variable variance of x̃ is 1 if the variance of x is 1. DDPMs simulate
the entire diffusion process from a clear image to pure noise (and its reverse)
by uniformly and randomly sampling the noise intensity γ from the range [0, 1].
Based on this, we have developed a diffusion pre-training objective function to
learn high-quality representations:

ExEϵ∼N (0,I)Eγ∼p(γ)

∥∥∥fθ(√γx+
√
1− γϵ)− ϵ

∥∥∥2
2
, (2)

where fθ denotes an image-to-image translation architecture such as DeepLabV3+,
and p(γ) defines the noise schedule for DDPMs. The loss function represents a
single iteration of the diffusion process as modeled by DDPMs. Optimizing the
diffusion pre-training’s objective function yields an initial model that improves
the accuracy of early pseudo-labels in subsequent consistency training, thereby
preventing error accumulation.

2.3 Transformation Consistency Learning (TCL)

TCL thoroughly investigates the transformations of original images, enhancing
the model’s understanding of the intrinsic properties of images and ensuring the
complete utilization of unlabeled data. This section corresponds to Step 2 in
Fig. 1. Algorithms in semi-supervised segmentation aim to fully explore unla-
beled images Du =

{
xi
u

}
with a limited amount of annotations from labeled

images Dl =
{(

xi
l, y

i
l

)}
. For the implementation of TCL, each unlabeled im-

age xu undergoes three types of transformations simultaneously (AT, ET, and
PT) [21], as shown at the bottom of Fig. 1. Then, the objective function is a
combination of the supervised loss Ls and the unsupervised consistency loss Lu:

L =
1

2
(Ls + Lu) , (3)
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where the supervised term Ls is the cross-entropy loss between the model pre-
dictions and the ground truths. The consistency loss Lu ensures that the model
predictions under the ET and PT branches are consistent with those of the AT
branch, and it can filter out low-confidence samples, as follows:

Lu = 1
2Bu

(∑
1
(
max

(
pAffine

)
≥ τ

)
H
(
pAffine, pElastic

)
+∑

1
(
max

(
pAffine

)
≥ τ

)
H
(
pAffine, pPixel-level

))
,

(4)

where Bu represents the batch size for unlabeled data, τ is a pre-defined confi-
dence threshold. max

(
pAffine

)
is the highest probability value in this probability

distribution, representing the model’s confidence in its prediction for a certain
class. The indicator function 1 outputs 1 if max

(
pAffine

)
≥ τ , indicating high

model confidence, and 0 otherwise. H is the cross-entropy loss, used to minimize
the entropy between two probability distributions.

3 Experiments

3.1 Dataset and implementation

REFUGE2 dataset [5]. The REFUGE2 dataset is a publicly available CFP
dataset dedicated to glaucoma, featuring segmentation annotations for the op-
tic disc (OD) and optic cup (OC). It contains 2000 CFP images (1200 train-
ing images, 400 validation images, and 400 test images.) and was provided by
Zhongshan Ophthalmic Center (ZOC) in MICCAI. To balance foreground and
background classes, we utilize a U-Net for the coarse segmentation of the OD and
OC regions, yielding cropped images of 500×500 pixels. Ultimately, in the train-
ing set, the number of labeled images |Dl| = 60, and the number of unlabeled
images |Du| = 1140.

MS dataset [12]. The MS dataset comprises OCT data from 35 subjects,
including 14 healthy controls (HC) and 21 multiple sclerosis (MS) patients. Each
retinal OCT encompasses 49 B-scans with a resolution of 496×1024 pixels, an-
notated for 8 retinal layers: RNFL, GCIP, INL, OPL, ONL, IS, OS, and RPE
[12]. Each B-scan is divided into two nonoverlapping samples by width, and then
center-cropped to a height of 384. This process results in 3430 retinal OCT scans,
each 384×512 pixels in size, divided into 2940 training, 196 validation, and 294
test images. For the training, only 5 labeled images from diverse subjects were
used, that is, |Dl| = 5 and |Du| = 2935.

Implementation details. DiffTCL was implemented using torch-2.1.0 and
tested on a system equipped with 24Gi GeForce RTX 4090 GPUs (4 cards). To
make a fair comparison with prior works, we primarily adopted DeepLabV3+
based on ResNet50 as our segmentation model. In Step 1, the model’s output
channel size is 3. In Step 2, the output channel size of the model varies depending
on the task, being 3 for OD and OC segmentation, and 9 for layer segmentation.
During training, each mini-batch consists of 4 labeled and 4 unlabeled images.
The initial learning rate was set to 0.001, using an SGD optimizer. Training pro-
ceeds for 300 epochs, utilizing a polynomial learning rate scheduler. Regarding
the hyperparameter τ , we set it to 0.90.
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3.2 Results

The REFUGE2 results. In Table 1, we conducted experiments on OC and
OD segmentation for CFP, comparing them with other supervised and semi-
supervised SOTA methods, respectively. U-Net served as the baseline for com-
parison. DiffTCL achieved Dice scores of 86.5 for OC segmentation and 95.4 for
OD segmentation. Compared to UniMatch, it showed an average Dice improve-
ment of 5.0%. Additionally, visual comparisons for OD and OC segmentation
are provided in Fig. 2, illustrating that DiffTCL’s segmentation results closely
align with the ground truth. This success is attributed to DiffTCL’s effective
initial model and full utilization of unlabeled image data.

Table 1. On the REFUGE2 test dataset, OC and OD segmentation comparisons with
SOTA methods showed Dice score (%) improvements. Note that for the semi-supervised
setting, only 5% labeled samples were used on the training set.

Method OC OD Mean

Supervised Baseline 82.3 92.1 87.2
M-Net [7] 84.9 94.0 89.5

RBA-Net [14] 85.2 94.5 89.9

Semi-supervised MT [20] 81.5 90.9 86.2
UA-MT [24] 82.8 93.6 88.2
CCT [15] 80.7 92.1 86.4

SASSNet [11] 82.4 93.7 88.1
DTC [13] 83.0 93.3 88.2
CPS [4] 83.3 93.2 88.3

UniMatch [23] 81.8 91.6 86.7
DiffTCL (proposed) 86.5 95.4 91.0

The MS results. In Table 2, we carried out experiments on OCT layer seg-
mentation, comparing them with other supervised and semi-supervised SOTA
methods. DiffTCL achieved the best results in the segmentation of each layer,
with an average Dice score of 88.32. Compared to UniMatch, which also em-
ploys consistency learning, our method achieved a 2.3% improvement in Dice
scores. To further demonstrate the performance of DiffTCL, we provide quali-
tative comparison results. As shown in Fig. 3, there are fewer over-segmented
and under-segmented pixels.

Ablation study. We performed an in-depth analysis to evaluate the contri-
bution of each element in our DiffTCL method, as depicted in Table 3, through
ablation studies on REFUGE2. Performance dipped when any transformation
branch within TCL, like ET or PT, was removed. A complete implementation of
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Fig. 2. Conducting a qualitative comparison between DiffTCL and SOTA methods
for both OC and OD segmentation on the REFUGE2 test dataset, while employing a
training set with only 5% of labeled samples. (a) Original CFP, (b) Ground truth, (c)
MT, (d) UA-MT, (e) SASSNet, (f) CPS, (g) UniMatch, (h) DiffTCL.

Table 2. Based on the MS test dataset, the retinal layer segmentation results were
compared with SOTA methods, showing an improvement in Dice score (%). Note that
only 5 labeled samples were used in the training set.

Method Retinal layers

RNFL GCIP INL OPL ONL IS OS RPE Mean

Supervised Baseline 88.07 88.09 77.65 84.57 90.64 79.21 80.60 82.84 83.96
MGU-Net [10] 89.50 90.19 79.14 81.80 89.86 76.54 79.83 80.44 83.41

MTF [2] 89.51 88.10 82.65 85.08 92.15 82.71 82.85 83.83 85.86

Semi-supervised MT [20] 89.00 89.92 81.22 84.79 90.93 81.26 81.73 84.48 85.42
UA-MT [24] 89.35 90.88 82.01 86.28 91.42 78.74 80.59 85.22 85.56
CCT [15] 89.08 89.86 82.12 84.55 91.11 80.54 79.19 80.59 84.63

SASSNet [11] 89.11 89.94 82.07 84.53 90.95 78.92 80.71 82.93 84.90
DTC [13] 89.26 90.44 82.87 84.99 90.24 77.18 81.31 85.03 85.16
CPS [4] 89.25 90.48 81.68 86.16 92.05 82.21 84.67 84.00 86.31

UniMatch [23] 89.53 90.97 81.19 86.54 92.29 81.95 84.23 83.68 86.30
DiffTCL (proposed) 90.69 91.14 84.98 88.63 92.98 84.60 86.09 87.42 88.32

TCL reached an mean Dice score of 88.6, thanks to exploiting a variety of original
image transformations that improved the model’s understanding of the intrin-
sic properties of images. Incorporating self-supervised diffusion pre-training into
TCL (DiffTCL) not only boosts performance but also speeds up convergence,
lowering training costs. Additionally, analyses in Table 4 and Table 5 on visible
label quantities in REFUGE2 and MS datasets’ training sets demonstrated that,
even with a minimal number of visible labels, we achieved Dice improvements of
2.58 and 3.94 times over the supervised method.
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Fig. 3. Qualitative comparison of layer segmentation on the MS test dataset with other
methods, with only 5 labeled samples in the training set. (a) Original OCT images, (b)
Ground truth, (c) MT, (d) UA-MT, (e) SASSNet, (f) CPS, (g) UniMatch, (h) DiffTCL.

Table 3. The ablation experiment is on the REFUGE2 test dataset.

Method OC Dice (%) OD Dice (%) Mean (%)

TCL w/o ET 67.2 83.4 75.3
TCL w/o PT 50.4 61.5 56.0

TCL 83.3 93.9 88.6

DiffTCL (proposed) 86.5 95.4 91.0

Table 4. Average Dice score (%) comparison with supervised method (DeepLabV3+)
on REFUGE2 test dataset, where the percentage indicates the proportion of labeled
training images from REFUGE2. △ measured against DeepLabV3+.

Method 5% 10% 20% 25% 50%

DeepLabV3+ w/ ResNet50 35.3 56.7 62.2 65.5 68.2
DiffTCL (proposed) 91.0 91.2 91.5 91.5 92.0

Gain (△) 2.58× 1.61× 1.47× 1.40× 1.35×

4 Conclusions

This study details DiffTCL, a semi-supervised segmentation method for retinal
images. DiffTCL’s core components are Diffusion-Enhanced pre-training and
Transformation Consistency Learning (TCL). Diffusion-Enhanced pre-training
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Table 5. Comparison of Dice scores (%) with supervised methods on the MS test
dataset under different numbers of labeled images. The values provided in the table
are the average Dice across 8 segmentation layers.

Method 5 10 50 100 1470

DeepLabV3+ w/ ResNet50 22.44 35.33 64.18 71.75 80.08
DiffTCL (proposed) 88.32 89.25 89.77 90.19 91.10

Gain (△) 3.94× 2.53× 1.40× 1.26× 1.14×

ensures an optimal initial model, preventing error accumulation. TCL utilizes
predictions from image affine transformations as supervision for elastic and
pixel-level transformations, efficiently utilizing unlabeled data and enhancing
the model’s understanding of the intrinsic properties of images. Experiments on
images from two modalities (CFP and OCT) demonstrate DiffTCL’s superior
performance over existing SOTA methods, particularly in scenarios with limited
labeled data. DiffTCL provides a powerful solution for enhancing the accuracy
and efficiency of retinal image segmentation with a small number of labels.
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