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Abstract. Pathological structures in medical images are typically devi-
ations from the expected anatomy of a patient. While clinicians consider
this interplay between anatomy and pathology, recent deep learning algo-
rithms specialize in recognizing either one of the two, rarely considering
the patient’s body from such a joint perspective.
In this paper, we develop a generalist segmentation model that combines
anatomical and pathological information, aiming to enhance the seg-
mentation accuracy of pathological features. Our Anatomy-Pathology
Exchange (APEx) training utilizes a query-based segmentation trans-
former which decodes a joint feature space into query-representations
for human anatomy and interleaves them via a mixing strategy into the
pathology-decoder for anatomy-informed pathology predictions.
In doing so, we are able to report the best results across the board on
FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a
margin of up to 3.3% as compared to strong baseline methods. Code and
models are available at github.com/alexanderjaus/APEx.
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1 Introduction

Throughout their extensive training, radiologists acquaint themselves with hu-
man biology and physiology, enabling them to discern typical patterns in the
anatomy of both healthy individuals and those presenting health concerns. Years
of clinical practice empower doctors to use this underlying knowledge about the
body to associate very nuanced visual anatomy abnormalities with specific dis-
eases correctly. This holistic approach of doctors, considering both anatomy and
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pathology in the tissue is contrasted by the vast amount of current automatic
pathology segmentation models that specialize in narrow disease types and fall
short of an overall understanding of body structures [23,16]. These models are
generally end-to-end semantic segmentation learners [22,21], and resemble mod-
els designed for the natural image domain and as such could be applied inter-
changeably in both domains, from pathology- to street-scene- [29] and everyday
object segmentation [6,25]. Conversely, the medical imaging field has an obvious,
yet often disregarded continuity which is – of course – the context is always the
human body with the patient’s anatomy.

While patients’ anatomical features vary, the medical biases that associate
anatomy with pathology for radiological assessment remain constant, such as
simple observations, that a fracture has to be associated with a bone structure
or that tumor locations often correspond to anatomical regions. When iden-
tifying a pathology, current segmentation models might or might not pick up
anatomy-pathology correlations during training, which is the reverse direction
to using anatomical priors for pathology identification. In the spirit of a doctor’s
workflow, we ask: Can explicitly learned human anatomy improve a model’s
capability to predict pathological structures?

Within this work, we explore different strategies to incorporate anatomical
knowledge which we model as anatomical labels to improve upon pathology
predictions. Inspired by the training of medical professionals, we propose a joint
training procedure in which our network learns to predict both: anatomy and
pathology via our proposed APEx architecture.

We summarize our contributions as follows: (1) We ablate multiple strate-
gies on how to incorporate learned anatomical knowledge into pathology seg-
mentation models. (2) We introduce a query-based, joint anatomy and pathol-
ogy instance segmentation model APEx, which is capable of enriching pathol-
ogy predictions by integrating anatomy knowledge via shared embeddings and
query mixing. (3) We validate the performance of APEx on two different med-
ical datasets covering whole-body FDG-PET-CT and chest X-Ray with as di-
verse anatomical structures as bones, organs and vessels for an improved joint
anatomy-pathology recognition of +2.0%, +3.3% respectively.

Related Work: Leveraging anatomical knowledge as a prior has been addressed
in some previous works in the form of shapes [27,20,18], expected textures [11]
or atlas-based segmentation models [10] to aid segmentation. While these works
mostly aim to segment anatomical structures, some works have started to lever-
age anatomical priors to improve upon pathology detection in X-Ray [17] or
Colorectal Cancer segmentation in CT [28]. These studies highlight the ben-
eficial effects of using anatomical priors but mainly utilize manually designed
features tailored towards a specific use-case (e.g. the intestinal wall is important
to detect colorectal cancer).

Within this work, instead of following the idea of manually designed fea-
tures, we opt for a more data-driven and deep-learning-inspired approach: We
investigate the usefulness of learned anatomical features to aid the segmenta-
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tion of pathology. This approach breaks free of hand-crafted prior limitations
and allows us to capture the knowledge available thanks to recently available
holistic anatomical datasets [26,12,24]. We hypothesize that utilizing anatomical
features helps identify pathologies as deviations from the expected anatomy.

2 Methodology

In this section, we first present the learning setup for anatomy and pathology seg-
mentation and walk through our ablations to incorporate anatomical knowledge
into the model training. Finally, we derive our so called Anatomy-Pathology
Exchange (APEx) strategy to jointly learn both anatomy and pathology.

2.1 Preliminaries

Our formulation of the anatomy and pathology segmentation task depends on a
training dataset:

D = {(xi, ai, pi)}Ni=0 , (1)

with xi ∈ R3×H×W referring to one of the N images in the dataset, while ai ∈
[0, . . . , A]H×W is the associated anatomy with A classes and pi ∈ [0, . . . , P ]H×W

the pathology mask with P classes within the image. The task of a trained model
is to predict, for new unseen test images xt for each pixel in the image the correct
anatomy categories at as well as the correct pathology classes pt.

If the dataset provides instance-level annotations, we extend the approach
to an instance-aware regime. Each anatomical mask ai and pathological mask pi
then includes not only class- but instance-aware targets.

To investigate whether anatomical knowledge aids in identifying deviations
from expected anatomy, we will examine two different tasks in two distinct do-
mains: semantic segmentation of cancer in PET-CT images and instance-aware
segmentation of thoracic abnormalities in chest X-Rays.

To accommodate these varied requirements, we opt for a 2D model due to
the constraints of the X-Ray domain and model the 3D PET-CT images as
sliced 2D images. To address the differing demands of semantic and instance-
aware segmentation, we align with recent advancements in segmentation lit-
erature [5,14,2,30] which intertwine both semantic- and instance segmentation
through the design choice of predicting high-dimensional query vectors, which
combined with pixel-wise embeddings, encode instance-wise segments in an im-
age. These queries are then employed to classify each segment, encapsulating
information about both the segment’s class and its shape. As a starting point
for the experiments, we choose a Mask2Former [5] architecture. Our chosen setup
is flexible in the choice of image modalities and in the choice of segmentation
tasks.
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2.2 Incorporating Learned Anatomical Knowlege: A roadmap

To investigate how to incorporate anatomical knowledge into the model training,
we perform several ablations in a five-fold cross-validation setting in the domain
of PET-CT. The baseline comparison model is a Mask2Former [5] model trained
only on pathological labels. We report the 5-fold Validation IoU scores of naive
anatomy incooperation techniques in Tab. 1 (left).

Table 1. Val scores on the 5-fold CV PET-CT splits. A. Cond, A. Pred and γ denote
anatomy conditioning, auxillary anatomy learning and a weight factor respectively.

Naive Anatomy Incooperation
Method A. Cond A. Pred γ IoU

Baseline – – – 54.34± 1.46
Pretrain ✓ – – 56.64± 3.06
Multitask – ✓ 1 56.10± 3.36
Multitask – ✓ 10 57.12± 4.17
Multitask – ✓ 142 55.89± 3.03
Ana In ✓ – – 57.23± 2.71
Ana In ✓ ✓ 1 56.52± 4.14

Architecture Ablations
Method IoU

Baseline 54.34± 1.46
+Shared BB 54.44± 4.14
+Shared PD 58.69± 3.63

⌞Query Sum 59.56± 3.64
⌞Query Sum 2-ways 59.35± 3.18
⌞Query Mean 59.78± 3.23
⌞Cross Attention (CA) 59.42± 2.42
⌞CA per feature level 58.48± 2.52

First, we investigate the effect of pretraining on anatomy. This leads to an im-
provement of about 2.3%.
Multitask Prediction: Next, we compare to jointly learned features using a
multi-task setting approach. We paste the pathological labels atop the anatom-
ical labels predicting an additional class. Despite being suboptimal, since PET-
CT pixels could be interpreted as both, anatomy and pathology, depending on
the context, this leads to a similar improvement as pretraining. However, treating
pathology as just another class underestimates its significance. To address this,
we apply a weighted loss with weight γ, amplifying the pathology class’s impor-
tance by 10-fold and 142-fold to equate it with the 142 anatomical labels. The
10-fold increase yields positive results, whereas the 142-fold adjustment demon-
strates the challenge of selecting an appropriate weight factor.
Anatomy as an Auxiliary Input: Inspired by atlas-based segmentation meth-
ods, we input anatomical labels along with the PET-CT image mimicking an
optimal anatomy atlas. Using this procedure, we receive similar results as with
the previous approach.

Architecture Ablations: The last section’s analysis underscores that while
anatomical knowledge can enhance pathology prediction, its effective utilization
is complex. Thus, in our second experimental series, we postulate that due to the
inherent overlap between anatomical and pathological labels, a two-head predic-
tion approach is optimal.
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Fig. 1. Overview of the proposed APEx Method, leveraging a shared pixel encoder,
shared pixel embedding space, separate decoders and a query-mixing module.

Initially, only the ResNet50 backbone is shared between the two prediction heads,
resulting in no major improvement. A critical adjustment involves the sharing
of a PixelDecoder across both anatomical and pathological prediction tasks.
This integration significantly boosts the performance, evidenced by a notable
increase of over 4% in IoU. This enhancement underscores the PixelDecoder’s
role in generating pixel embeddings rich in anatomical and pathological infor-
mation, marking it as a crucial element in our design reflecting the dual role of
each pixel in this task.
Query Mixing Strategies: Ultimately, as we employ distinct transformer de-
coders for anatomical and pathological predictions, we probe the efficacy of infor-
mation exchange mechanisms via query exchange. This reflects the possibility of
a direct exchange of queries representing anatomical and pathological segments.
We explore various strategies, including nonparametric mixing and more flexi-
ble communication strategies such as cross-attention. While almost all strategies
lead to a positive effect, none of them shines out as a clear winner.

We conclude this section with the insight that a two-head prediction one
for the anatomy and one for pathologies leveraging shared pixel-embedding is
a crucial design choice. On top, enabling communication between the different
decoders leads to a further performance boost. The best-ablated model performs
about 5.44% better than the naive baseline model.

2.3 Proposed Approach: APEx

APEx is based on a query-based segmentation approach leveraging anatomi-
cal and pathological information. It incorporates anatomical context via the ex-
change of information between two decoders: One tasked to segment the anatomy
and one tasked to segment the pathology. We show the overall method in Fig. 1.
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Shared Embedding Architecture: Starting with a standard 2D image x ∈
R3×H×W we encode the image using a feature extractor fextr (parameterized
by a ResNet50 [9]), which maps x to a set of feature maps at different scales
fextr(x) = {Fi}ni=0 with Fi ∈ RHi×Wi , such that Hi > Hi+1 and Wi > Wi+1

hold, i.e., feature maps successively get smaller in spatial extent. These feature
maps are then decoded using an arbitrary pixel-decoder. We choose to use the
deformable DETR [30] model as a pixel-decoder producing a set of enriched pixel
embeddings {Ji}ni=0, with Ji ∈ Rd×Hi×Wi .

Anatomy and Pathology Decoders: Our architecture is motivated in com-
puting separate query vectors for anatomy and pathology classes and let the
anatomy queries influence the pathology queries while limiting the reverse influ-
ence only to a shared embedding space.

Each enriched pixel encoding map Ji is accessed by two decoding functions
fana
i (·) and fpath

i (·) from the function sets {fana
i (·)}1i=n and {fpath

i (·)}1i=n which
either decode the anatomy or the pathology from it.

Randomly initialized, but learnable parameter-queries qana0 and qpath0 are
transformed via

qanai+1 = fana
i (qanai , Ji) and (2)

qpathi+1 = fpath
i (qpathi , Ji) , (3)

and optimized during training. The decoders fi(·) follow a standard masked
transformer setup, i.e. queries are transformed through a cross-attention layer
that attends to the joint embeddings of the respective scale i, followed by a
self-attention and feed-forward layer. For the pathology branch {fpath

i (·)}1i=n

to explicitly adhere to the learned anatomical queries an anatomy-to-pathology
communication strategy is designed next.

Anatomy to Pathology Communication Strategy: Medical personnel have
access to a large amount of knowledge regarding the human body, which current
pathology segmentation models do not have. Besides the implicit information
exchange via the shared pixel embedding, we propose to integrate a communica-
tion step fmix

i (·) after each pathology-decoder step fpath
i (·). There the queries

qpathi resulting from the scale i pathology-decoder are enriched with the anatomy
queries qanai from the anatomy-decoder as follows:

q̂pathi = fmix
i (qanai , qpathi ) (4)

Here, q̂pathi is the anatomy-enriched pathology query which, through a mixing
strategy is capable of capturing anatomical information. We did not find a su-
perior mixing strategy and thus would either recommend averaging the queries
as a nonparametric approach or using a cross-attention mixing module.

In this asymmetric architectural setup, anatomical information influences
the pathology-specific queries while the anatomy branch stays agnostic to any
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Table 2. Comparison of APEx against multiple SOTA methods in the PET-CT domain
(left). We highlight the best and the second best performance.

Method PET-CT VAL PET-CT TEST
IoU Dice BIoU IoU Dice BIoU

DLV3+[3] 55.00± 3.5 70.91± 3.0 54.78± 3.6 53.60± 5.4 69.65± 4.8 53.07± 5.4
M2F[5] 54.34± 1.4 70.41± 1.22 54.16± 1.6 55.48± 1.1 71.36± 1.0 55.02± 1.1
UNET[22] 57.62± 3.2 73.07± 2.6 57.38± 3.3 56.43± 1.5 72.14± 1.3 55.86± 1.4

Ours (CA) 59.43± 2.4 74.52± 1.9 59.21± 2.6 57.5± 0.9 73.01± 0.7 57.04± 0.9

pathology and simply reflects the patient-specific anatomy details serving as a
useful foundational prior in pathology assessment. This design is ablated against
an inferior design in which the anatomy branch is updated by the pathology as
well (cf. Tab. 1: Query Sum 2-ways).

Joint Anatomy and Pathology Segmentation: Bringing the whole archi-
tecture and processing steps together into our Anatomy and Pathology Exchange
(APEx) pipeline, we predict the anatomy and pathology segments through the
following dot product:

outana = J0 · qanan−1 and (5)

outpath = J0 · q̂pathn−1 , (6)

Query vectors are passed through a simple classifier to associate anatomy or
pathology classes to the predicted segments. The parameters of all components,
namely fextr, fana, fpath, and fmix are optimized via weighted cross-entropy
and binary mask losses enforced on each anatomy and pathology prediction
outana and outpath.

3 Experiments and Results

Datasets: To assess our method’s broad applicability, we performed experi-
ments across two vastly different medical imaging domains: FDG-PET-CT, and

Target M2F [5] APEx (ours) APEx Attended Anatomy

Fig. 2. Stacked 2D tumor predictions next to top-5 attended anatomical structures.
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Chest X-Ray. For FDG-PET-CT, due to the absence of a comprehensive dataset
with both anatomical and lesion annotations, we merged two distinct datasets:
autoPET [7], which provides lesion annotations, and the Atlas dataset [12], of-
fering anatomical details. We exclude patients without pathologies, motivated
by the high accuracy (≥ 95%) of binary classifiers for cancer detection in PET
images. Our study utilized 185 3D volumes for five-fold cross-validation and an
additional test set of 125 cancer patients from the remaining dataset. To adapt
images to the selected 2D setting, we slice them axially and stack CT and PET
images channel-wise, leaving the third channel empty.

In the X-Ray domain, we evaluate the properties of our method on the
ChestXDet[15] dataset containing 13 pathology classes. To train anatomy seg-
mentation, we predict anatomy pseudo-labels onto this dataset using a model
trained on the PaxRay++ dataset [24]. We evaluate the different methods using
five-fold cross-validation on the training set. During training, we omit images
with no pathologies.
Baselines and Methods: When evaluating models across different domains,
we determine the best performing candidate based on the performance on the
individual validation sets. We use either the official test splits, if they exist,
or a test set that we reserved beforehand. We benchmark APEx on PET-CT
against established 2D segmentation baselines such as UNet [22], DeeplabV3+
[3] and Mask2Former [5]. In all experiments, we ensure models are trained us-
ing identical data and learning pipelines to isolate the effect of incorporating
anatomical knowledge. For chest X-Ray, we compare on instance segmentation
against PointRend [13], MaskDino [14] and Mask2Former[5]. Regarding the spe-
cific APEx architecture, we choose the Cross-Attention Query Mixer, as it offered
a competitive performance with the lowest standard deviation during our initial
ablations (cf. Tab. 1).

3.1 Semantic- and Instance Segmentation Results

PET-CT Results: In Tab. 2 we report the Dice, IoU and Boundary IoU [4]
(BIoU) performances of the previously mentioned baseline segmentation models
against our method. All models have been initialized with LVM-MED weights [19]
to provide a fair comparison. The results indicate that our method is capable of
outperforming multiple strong competitors on our five-fold validation splits and
the holdout testset. Fig. 2 shows qualitative results as well as the most attended
anatomical structures during the cross-attention query mixing step.
ChestXDet Results: In Tab. 3.1, we show the performance of different state-
of-the-art instance segmentation methods trained using the same backbone. We
see that our method improves over the Mask2Former-baseline by ∼3.75% mAP.
Across 12 of 13 pathologies, our method achieves the best, or second-best per-
formance, improving over recent transformer architectures as well as established
CNN models. Detailed results and qualitative examples are in the Appendix.
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Table 3. ChestXDet[15] results. We highlight the best performance in bold and the
second best by underlining. Detailed results in Appendix.

Pathology MRCNN[8] CascCRCNN [1] PointRend[13] MskDino[14] M2F[5] Ours (CA)

mAP (Val) 13.98 ± 0.40 14.64 ± 0.44 15.33 ± 0.82 16.44 ± 1.43 16.57 ± 0.67 17.16 ± 0.63
mAP (Test) 13.72 ± 0.41 13.86 ± 0.70 15.14 ± 0.44 14.38 ± 0.74 13.87 ± 0.53 17.20 ± 0.33

4 Conclusion

We proposed a novel way of leveraging anatomical information to improve pathol-
ogy segmentation and showed the efficacy of the general concept of anatomy-
guidance in two different domains covering diverse anatomical structures and
pathologies. Besides improved performance, our method APEx encourages the
exchange of anatomical information to ensure pathology segments are informed
by the patient’s anatomy, aligning more with the workflow of doctors that de-
veloped over decades.
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