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Abstract. Test-Time Adaptation (TTA) shows promise for addressing
the domain gap between source and target modalities in medical image
segmentation methods. Furthermore, TTA enables the model to quickly
fine-tune itself during testing, enabling it to adapt to the continuously
evolving data distribution in the medical clinical environment. Conse-
quently, we introduce Spatial Test-Time Adaptation (STTA), for the
first time considering the integration of inter-slice spatial information
from 3D volumes with TTA. The continuously changing distribution of
slice data in the target domain can lead to error accumulate on and catas-
trophic forgetting. To tackle these challenges, we first propose reducing
error accumulation by using an ensemble of multi-head predictions based
on data augmentation. Secondly, for pixels with unreliable pseudo-labels,
regularization is applied through entropy minimization on the ensemble
of predictions from multiple heads. Finally, to prevent catastrophic for-
getting, we suggest using a cache mechanism during testing to restore
neuron weights from the source pre-trained model, thus effectively pre-
serving source knowledge. The proposed STTA has been bidirectionally
validated across modalities in abdominal multi-organ and brain tumor
datasets, achieving a relative increase of approximately 13% in the Dice
value in the best-case scenario compared to SOTA methods. The code is
available at: https://github.com/lixiang007666/STTA.

Keywords: Test-Time Adaptation · Cross-Modality · Medical Image
Segmentation · Spatial Information · Cache Mechanism.

1 Introduction

Medical image segmentation plays an important role in clinical applications such
as computer-aided diagnosis. In recent years, Deep Learning (DL) methods have
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been widely used for medical image segmentation [17,3,12]. DL methods are
data-driven and are usually based on the assumption that the training and test
data follow the same distribution. However, if there is a data distribution incon-
sistency (called domain gap) between the training and test data, the deep model
usually leads to a dramatic performance degradation. Domain gap usually occurs
in real-world scenarios of medical image processing [4], when the training and
test medical image data come from different locations, different scanners, and
even different modalities, such as Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI).

Domain Adaptation (DA) holds the promise of addressing the domain gap
issue between training and testing data [4,20,21,24]. However, one limitation
of DA is that the model is fixed after training and cannot be adjusted during
testing. Test-Time Adaptation (TTA) allows the model to quickly fine-tune and
adapt during testing, enabling it to handle the evolving data distribution in real
clinical environments, where the data distribution is constantly changing. Nado
et al. [10] proposed a TTA method called PTBN, which modifies the statistical
parameters in the Batch Normalization (BN) layers based on the data from the
target domain. Wang et al. [16] introduced TENT, tuning BN layers by minimiz-
ing prediction entropy in the target domain. These methods, originally intended
for natural images, assume that updates to the BN layers can adequately bridge
domain gaps. However, this assumption has shown limited effectiveness in TTA
for medical images [15]. Prabhu et al. [11] proposed URMA, using pseudo-labels
and uncertainties from multiple branches to aid adaptation. However, due to
potential inaccuracies in its pseudo-labels [13], it risks error accumulation. Wu
et al. [22] proposed UPL-TTA, a method capable of adapting the source model
to unlabeled target domains without knowledge of the source model’s training
strategy. Nevertheless, it still suffers from catastrophic forgetting.

To avoid the issues of error accumulation and catastrophic forgetting men-
tioned above, while enabling the model to quickly fine-tune itself during testing
to adapt to the constantly evolving distribution of medical data in clinical en-
vironments, we propose the Spatial Test-Time Adaptation (STTA) method for
cross-modality medical image segmentation. The main contributions of this work
are summarized as follows: 1) We present the STTA method, conceptualized for
clinical environments, enabling off-the-shelf source pre-trained models to effec-
tively adapt to continuously changing target medical data. It accomplishes this
by assimilating inter-slice spatial information from 3D volumes into TTA; 2) We
propose an innovative approach utilizing an ensemble of multi-head predictions
based on data augmentation and applying entropy minimization to the ensem-
ble results to reduce error accumulation; 3) We introduce a cache mechanism to
efficiently preserve knowledge from the source model, mitigating the effects of
catastrophic forgetting.

2 Proposed method

As shown in Fig. 1, STTA comprises three main components.
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The first component of STTA is designed to mitigate error accumulation. We
propose improving the quality of pseudo-labels within a self-training framework
in two distinct ways. On one hand, inspired by the observation that predictions
from a mean teacher model [13] often exceed the quality of those from a stan-
dard model, we utilize a mean teacher model as the foundation of STTA to
provide more accurate predictions. On the other hand, for test data significantly
influenced by domain gaps, we employ a data-augmented multi-head predictions
ensemble to further enhance the quality of pseudo-labels. The second component
addresses pixels with unreliable pseudo-labels by applying entropy minimization
to the ensemble of predictions from multiple heads for regularization. Lastly, the
third component aims to prevent forgetting. We suggest a cache mechanism to
restore the weights of some operators from the source domain pre-trained model
to the target domain student model.

Fig. 1: Overview of our STTA, where pk is the soft prediction of the k-th head.
STTA requires inputting three adjacent slices of a 3D volume in sequence.

For the acquisition of the source model, let S represent the source domain
with data distribution µS(x), and T represent the target domain with data
distribution µT (x). Let XS = {(xs

i , y
s
i ) | i = 1, . . . , Ns} denote the training

images and their labels in the source domain, and XT = {(xt
j) | j = 1, . . . , Nt}

represent unlabeled slices in the target domain for adaptation. Note that µS(x) ̸=
µT (x). The pre-training stage in the source domain is represented as:

fθ0(x) = argmin
1

Ns

Ns∑
i=1

Ls (fθ0 (x
s
i ) , y

s
i ) , (1)
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where fθ0(x) represents the source domain model to be transferred. Ls denotes
the training loss in the source domain.

2.1 Spatial insights for TTA

Directly using 3D volumes incurs significant inference overheads, such as mem-
ory and time, making it unsuitable for TTA deployment scenarios. Conversely,
2D images do not fully exploit spatial information. The 2.5D strategy becomes
an effective compromise. In previous work [25,8], their approach involved stack-
ing slices from all 3D surfaces to implement the 2.5D. Inspired by these studies,
STTA also adopts the 2.5D strategy, sequentially inputting three adjacent slices
(one central slice and two adjacent slices). Furthermore, sequential input en-
hances TTA performance as the data distribution exhibits smoother transitions.

2.2 Implementation of the STTA algorithm

As illustrated in Algorithm 1, the fusion of enhanced pseudo-labels with the
cache mechanism gives rise to our STTA method.

Algorithm 1 The proposed STTA.
1: Initialization: A source pre-trained model fθ0 in Eq 1 (As the initial weights for

the student model), teacher model fθ′0 initialized from fθ0 .
2: Input: For the j-th central slice (along the channel direction), current stream of

data xt
j .

3: for the j-th slice do
4: Input xt

j and its augmentation into the teacher network fθ′j to obtain pseudo-
labels that have undergone an ensemble of multi-head predictions and entropy
minimization, based on Eq 2 and Eq 3.

5: Update student fθj by consistent backpropagation in Eq 4.
6: Update teacher fθ′j by Exponential Moving Average (EMA) in Eq 5.
7: Restore the student model fθj using caching through Eq 6.
8: end for
9: Output: Prediction fθ′j (x

t
j); Updated student model fθj+1 ; Updated teacher model

fθ′j+1
.

STTA duplicates the decoder of the teacher model k times to implement a
multi-head predictions ensemble. The data augmentations used include rotation,
horizontal flipping, scaling, zooming, and elastic deformation [18]. The formulaic
expression is as follows:

ỹ′
t

j =
1

k

k−1∑
i=0

fθ′
j

(
augk

(
xt
j

))
,

y′
t
j =

{
ŷ′

t

j , if conf
(
fθ0

(
xt
j

))
≥ pth

ỹ′
t

j , otherwise,

(2)
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where ỹ′
t

j is the data-augmented multi-head predictions ensemble from the teacher

model, ŷ′
t

j is the direct prediction from the teacher model, conf
(
fθ0

(
xt
j

))
repre-

sents the prediction confidence of the source pre-trained model on the slice xt
j of

the current 3D volume, and pth is a confidence threshold. Our hypothesis is that
lower confidence suggests a larger domain gap, while relatively high confidence
levels indicate a smaller domain gap [19]. Consequently, when confidence is high
and exceeds the threshold, we utilize ŷ′

t

j directly as our pseudo-label, abstain-
ing from any augmentation. In cases of low confidence, we employ additional k
augmentations to enhance the quality of the pseudo-label.

Additionally, we applied Mean Prediction-Based Entropy Minimization [22]
to the results after predictions ensemble, resulting in optimized pseudo-labels:

LMent = − 1

HW

HW∑
n=1

C∑
c=1

pc,n log
(
pc,n

)
, (3)

where p represents the probability map obtained by averaging k predictions. H,
W , and C represent the shape of the probability map, with n = 1, 2, . . . ,HW
being the pixel index, and c = 1, 2, . . . , C, where C corresponds to the number of
segmentation classes. Compared to individually minimizing the entropy of each
augmented prediction head, minimizing the entropy of their mean prediction
p can not only reduce the uncertainty of a single augmented prediction head
but also promote consensus among k heads for the same test sample, thereby
enhancing the model’s prediction robustness for unseen test samples.

LConsistency = −
∑
c

y′tjc log ŷ
t
jc, (4)

θ′j+1 = αθ′j + (1− α)θj+1, (5)

where y′tjc represents the probability of class c in the teacher model’s pseudo-label
prediction, while ŷtjc denotes the prediction from the student model. The loss
aims to enforce consistency between the teacher and student predictions. Upon
updating the student model fθj → fθj+1

using Eq 4, we further update the
teacher model’s weights using the EMA of the student model’s weights through
Eq 5, wherein α represents the smoothing factor. Our ultimate prediction (infer-
ence) for the input slice xt

j is determined by identifying the class that exhibits
the maximum probability within y′

t
j .

2.3 Cache mechanism

We designed a cache-driven method to efficiently recover knowledge from the
source model, thus mitigating the effect of catastrophic forgetting. Segmenta-
tion networks are typically structured as encoder-decoder architectures, and we
define “shallow layers” as those near the input end of the encoder and the output
end of the decoder (a layer consists of Conv2d, BN, and ReLU). The threshold
for dividing layers into “deep and shallow” can be adjusted to suit the dataset [9].
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Accordingly, in STTA, we divide the weights of the source model into deep cache
and shallow cache. The deep cache focuses on essential global features, while the
shallow cache concentrates more on local features such as textures. During adap-
tation, the deep cache is accessed when the number of slices reaches a threshold,
and the shallow cache is accessed for each remaining iteration. The use of deep
cache leans towards stability and maintaining global information, whereas the
frequent access of shallow cache allows for a rapid response to changes in local
features. Let Wj+1 represent the model weights in the student model after the
gradient update at slice j. The implementation of cache mechanism is described
as follows:

Wj+1 =

{
Merge

(
W S

j+1,W
D
cache

)
, if j = th

Merge
(
WD

j+1,W
S
j+1 ⊙M +W S

cache ⊙ (1−M)
)
, otherwise ,

(6)

where M ∼ Bernoulli(p) denotes a binary mask tensor, where WD
cache and W S

cache
respectively represent the deep and shallow cache of the initial source weights.
D refers to the network’s deep layers, while S indicates the shallow layers. When
j equals the threshold th, the deep cache is fully restored into Wj+1. Otherwise,
the model’s shallow cache is randomly restored into Wj+1 according to M .

3 Experiments

3.1 Dataset and implementation

The Abdominal dataset. This dataset is commonly utilized in DA tasks
[1,14]. It comprises two subsets of abdominal data: 20 MRI scans from the
CHAOS challenge [6] and 30 CT scans from the Multi-Atlas Labeling Beyond
the Cranial Vaulti-Workshop and Challenge [7]. The dataset includes labels for
four organs: liver, right kidney (R.kidney), left kidney (L.kidney), and spleen.
Each MRI scan has dimensions of 256 × 256 × L within a 3D volume, where L
represents the length of the long axis and varies among subjects. Each CT scan
is sized at 512× 512×L, and we crop the images to 256× 256×L. In the source
domain, for each modality, we randomly split the dataset into training and test
sets with a ratio of 4:1. In the target domain, as it is a TTA task, all data from
the target modalities were used as the test set.

The BraTs 2018 dataset. This dataset is a comprehensive dataset that
includes multimodal 3D brain MRIs along with their corresponding ground truth
segmentations. This dataset encompasses four MRI modalities for each case,
namely T1, T1c, T2, and FLAIR. In our research, we focus on two specific MRI
modalities for low-grade glioma cases, FLAIR and T2 [20]. The method of dataset
partitioning is consistent with that of the Abdominal Dataset. Additionally, we
resized each axial slice to dimensions of 192 × 168.

Implementation details. We implemented STTA on a device equipped
with a 6-core 42Gi GeForce RTX 3090 using torch-1.8.1-cu11.1-cudnn8. In the
pre-training phase within the source domain, we used Dice loss and the Adam
optimizer, training the model for 200 epochs with an initial learning rate of
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0.001 that decays by 10% every 20 epochs. During the adaptation periods in the
target domain, model parameters were updated over 20 epochs using the Adam
optimizer with a fixed learning rate of 0.0001. STTA employs a 2.5D strategy
by sequentially inputting three stacked slices of a 3D volume to generate seg-
mentation results for the central slice of each stack. In Eq 6, the th value is set
to the total number of slices in a 3D volume. For other hyperparameters, the
default EMA factor (α) was set to 0.999. To filter images and avoid augmen-
tations on high-confidence images, we used a threshold (pth) in Eq 2, defined
as pth = confS −δ. Here, confS indicates the 5% quantile of softmax confidence
from the source model fθ0 , and δ, set to 0.05, serves as a minor tolerance, en-
abling STTA to establish a threshold without test data reliance [5]. Additionally,
in the current dataset, we found that setting one shallow cache layer is optimal.

3.2 Results

The Abdominal results. We conducted bidirectional cross-modality TTA ex-
periments between MRI and CT scans in the Abdominal dataset, refer to Table
1. "Source-only" refers to the baseline approach of applying the source model
directly to the target data without any adaptation. In the "Target supervised"
approach, the model was exclusively trained using annotated images from the
target domain. To ensure a fair comparison, all the compared methods employed
the same backbone (DeepLabV3 [2]). In the CT → MRI setting, STTA achieved
up to a 13% higher Dice score than other SOTA methods (UPL-TTA). Further-
more, it also performs better on average symmetric surface distance (ASSD)
[23]. In Fig. 2, we also conducted a visual qualitative comparison that includes
"Source only," "PTBN," "TENT," "URMA," "UPL-TTA," and "STTA". STTA
is closer to the ground truth, with fewer overfitting or underfitting pixels.

The BraTS 2018 results. In this section, to highlight STTA’s general-
ization, we performed brain tumor segmentation tasks, including bidirectional
cross-modality TTA experiments with FLAIR and T2 modalities. As shown in
Table 2, STTA still achieves the best Dice and ASSD values. Additionally, in
Fig. 3, a qualitative comparison for brain tumor segmentation shows that our
method is closer to the ground truth.

Ablation study. We performed an in-depth analysis to assess the impact
of STTA’s components. The baseline method involved solely utilizing the pre-
trained model’s predictions as pseudo-labels for adaptation, while the introduced
components consisted of: 1) Spatial. Sequentially inputting three slices, in con-
trast to the traditional method of randomly inputting a single slice into the
model; 2) Ensemble. Ensemble of multi-head predictions based on data augmen-
tation; 3) Cache. Utilizing a cache mechanism to preserve source knowledge; 4)
LMent. Corresponding to Eq 3. As these components are gradually introduced,
the performance of STTA improves incrementally, as shown in Table 3. Ad-
ditionally, we set k=6 (the number of teacher model heads), with the input
including the five augmentations mentioned in section 2.2 and the original im-
age. Performance improves with increasing k, plateauing at k=7. Considering
performance and memory trade-offs, we opted for k=6.
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Table 1: Quantitative comparison with other methods on the Abdominal dataset.
Method (CT → MRI) Dice ↑ ASSD ↓

Liver R.kidney L.kidney Spleen Average Liver R.kidney L.kidney Spleen Average

Source only 0.582 0.789 0.686 0.009 0.517 4.661 2.678 1.545 14.518 5.850
Target supervised 0.727 0.941 0.941 0.713 0.831 3.250 0.484 0.272 6.120 2.532

TTA PTBN [10] 0.587 0.766 0.752 0.495 0.650 4.659 2.323 2.410 7.478 4.217
TENT [16] 0.599 0.771 0.747 0.504 0.655 4.655 2.369 2.406 7.512 4.236
URMA [11] 0.546 0.762 0.726 0.466 0.625 4.739 2.359 2.665 8.704 4.617

UPL-TTA [22] 0.622 0.759 0.722 0.507 0.653 4.489 2.188 2.280 7.372 4.082

STTA (Our) 0.645 0.813 0.817 0.679 0.739 4.458 2.212 1.449 6.260 3.595

Method (MRI → CT ) Dice ↑ ASSD ↓

Liver R.kidney L.kidney Spleen Average Liver R.kidney L.kidney Spleen Average

Source only 0.842 0.607 0.622 0.520 0.648 6.628 5.141 5.067 6.914 5.938
Target supervised 0.961 0.917 0.915 0.945 0.934 1.071 1.052 1.363 0.644 1.033

TTA PTBN [10] 0.769 0.565 0.646 0.616 0.649 4.170 3.421 3.860 3.193 3.661
TENT [16] 0.818 0.591 0.680 0.616 0.676 4.280 3.255 3.743 3.012 3.573
URMA [11] 0.762 0.546 0.651 0.609 0.642 4.795 4.974 4.087 4.442 4.575

UPL-TTA [22] 0.839 0.619 0.726 0.664 0.712 4.595 4.710 3.972 4.208 4.371

STTA (Our) 0.889 0.645 0.750 0.708 0.748 3.773 2.684 3.275 2.524 3.064

Table 2: Comparison of different SOTA
methods on the BRATS 2018 dataset.

Method (FLAIR → T2) (T2 → FLAIR)

Dice ↑ ASSD ↓ Dice ↑ ASSD ↓

Source only 0.656 5.520 0.770 3.718
Target supervised 0.859 2.393 0.886 1.483

TTA PTBN [10] 0.672 5.468 0.786 3.604
TENT [16] 0.703 5.428 0.791 3.563
URMA [11] 0.665 5.512 0.787 3.617

UPL-TTA [22] 0.714 4.402 0.798 3.411

STTA (Our) 0.752 3.630 0.838 3.306

Table 3: Ablation study of the proposed
method on the BRATS 2018 dataset.
FLAIR and T2 were used as the source
and target domains, respectively.

Components Dice ↑ ASSD ↓Spatial Ensemble Cache LMent

0.671 5.376
✓ 0.708 4.801
✓ ✓ 0.730 4.033
✓ ✓ ✓ 0.749 3.796
✓ ✓ ✓ ✓ 0.752 3.630

4 Conclusions

We propose a novel method termed STTA that improves long-term adaptation in
constantly changing medical clinical environments, addressing domain gaps be-
tween the source and target domains. STTA represents a pioneering effort to in-
tegrate inter-slice spatial information into TTA for medical image segmentation.
To curb error accumulation, STTA employs a multi-head prediction ensemble
derived from data-augmented inputs and enforces consistency by minimizing the
entropy of the ensemble’s aggregated outputs. Additionally, STTA introduces a
caching mechanism that is employed during iterative processes to reinstate the
source model weights, thereby preventing the occurrence of catastrophic forget-
ting. Empirical evaluations on both the Abdominal and BraTS 2018 datasets
have yielded evidence of STTA’s capability to substantially enhance segmenta-
tion performance, thereby affirming its practical efficacy.
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Fig. 2: Visualization of the segmentation results on the Abdominal dataset. The
structure of the Liver, R.kidney, L.kidney, and Spleen are shown in yellow, green,
blue, and red colors, respectively.

Fig. 3: Visualization of the BraTS 2018 dataset segmentation results.
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