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Abstract. Predicting Mild Cognitive Impairment (MCI) progression,
an early stage of Alzheimer’s Disease (AD), is crucial but challenging
due to the disease’s complexity. Integrating diverse data sources like clin-
ical assessments and neuroimaging poses hurdles, particularly with data
preprocessing and handling missing data. When data is missing, it can
introduce uncertainty and reduce the effectiveness of statistical models.
Moreover, ignoring missing data or handling it improperly can distort
results and compromise the validity of research findings. In this paper,
we introduce a novel fusion model considering missing data handling for
early diagnosis of AD. This includes a novel image-to-graphical repre-
sentation module that considers the heterogeneity of brain anatomy, and
a missing data compensation module. In the image-to-graphical repre-
sentation module, we construct a subject-specific graph representing the
connectivity among 100 brain regions derived from structural MRI, in-
corporating the feature maps extracted by segmentation network into the
node features. We also propose a novel multi-head dynamic graph convo-
lution network to further extract graphical features. In the missing data
compensation module, a self-supervised model is designed to compensate
for partially missing information, alongside a latent-space transfer model
tailored for cases where tabular data is completely missing. Experimental
results on ADNI dataset with 696 subjects demonstrate the superiority of
our proposed method over existing state-of-the-art methods. Our method
achieves a balanced accuracy of 92.79% on clinical data with partially
missing cases and an impressive 92.35% even without clinical data input.

1 Introduction

Alzheimer’s Disease (AD), a progressive neurodegenerative disorder, presents
a significant global public health challenge [3], with an expected substantial
increase in affected individuals in the coming decades [9, 8]. Depending on the
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criteria suggested by [1], current Mild Cognitive Impairment (MCI) patients
can be categorized as either progressive MCI (pMCI) or stable MCI (sMCI)
based on potential progression to AD within a typical 36-month follow-up period.
However, accurately predicting MCI progression (i.e., pMCI or sMCI) to AD
remains intricate and daunting due to the disease’s heterogeneous nature and
the multifactorial influences contributing to its onset and progression.

In recent years, Convolutional Neural Networks (CNN) have shown promising
performance in brain disease diagnosis and prediction [7, 14]. CNN also progress
in predicting AD conversion in advance from MCI [12, 15]. Compared with tra-
ditional machine learning methods [6], 3D CNNs excel at extracting high-level
information about neuroanatomy from Magnetic Resonance Imaging (MRI). A
multi-stream CNN fed with patch-based MRI imaging data has been proposed to
classify stable MCI and progressive MCI [2]. Since the features of different parts
make different contributions to the overall classification performance, a dual at-
tention multi-instance deep learning model is proposed to automatically find and
highlight the most informative points on feature maps for boosting the perfor-
mance of pMCI/sMCI classification [17]. Also, several studies show that models
pre-trained by normal controls (NC) and AD can further boost the prediction of
the progression of MCI [13]. Instead of extracting features directly from 3D MRI
data like the above methods, other studies focus on converting images into image-
derived phenotypes in form of tabular features or conducting additional manual
feature extraction. For instance, Zheng et al. [16] utilized Freesurfer to extract
features and construct tabular information for further prediction. However, the
aforementioned approaches all focus exclusively on neuroimaging data, ignoring
the importance of clinical data. Some successful multi-modal models to fuse the
different data sources have been proposed and achieved some improvements in
predictive tasks, but image and clinical data are only integrated through simple
concatenation [4]. Recently, a dynamic brain graph-based method for the fusion
of imaging and tabular data [10] has been proposed for predicting cognitive out-
comes in stroke cases, taking into account the specificity of a patient’s brain
anatomy. Although these fusion models achieve better performance for disease
diagnosis, multi-modal data, i.e., medical examination data and neuroimaging
data, are required as input, thus greatly limiting their applicability. Moreover,
the acquisition of tabular patient data frequently lacks standardization, leading
to incomplete or entirely absent information. Consequently, managing missing
data in the context of multi-modal fusion models remains an open issue.

In this paper, we present a novel fusion model considering missing data han-
dling for the early diagnosis of AD. Our contributions are as follows: (1) We
introduce a novel missing data compensation module aimed at resolving issues of
unavailability and incompleteness in clinical data, thereby enhancing the model’s
robustness to missing data and expanding its applicability. (2) In response to the
heterogeneity of the brain anatomy, a novel image-to-graphical representation
module is proposed to construct subject-specific dynamic brain region graphs,
utilizing first-order statistical features calculated from raw T1-MRI data and
segmentation related feature maps as node features. (3) We show comprehen-
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Fig. 1. The overview of our method for MCI progression prediction. Models in purple
box belong to image-to-graphical representation module and models in yellow box be-
long to missing data compensation module. "Orange line" shows the flow with partially
missing clinical data, and "Green line" means the flow without clinical data.

sive experimental results on the ADNI dataset and demonstrate the superior
performance of our proposed method, significantly outpacing rival methods by
a considerable margin. A detailed ablation study is conducted to verify the ef-
fectiveness of each proposed module.

2 Methodology

An overview of the proposed method is illustrated in Fig. 1. Considering the
specificity of patient brain anatomy, brain graph features Fg are extracted via
image-to-graphical representation module, as introduced in Section. 2.1. Mean-
while, accounting for the issues of unavailability and incompleteness in clinical
data, the compensated tabular features Ft are extracted by a novel missing data
compensation module, as outlined in Section. 2.2. In Section.2.3, a cross-modal
attention based fusion model is employed to fuse Ft and Fg for pMCI prediction.

2.1 Image-to-Graphical Representation Module

Graph Generation. We represent the nodes of the graph with 100 struc-
tural brain regions segmented by FastsurferCNN [5]. The edges of the graph
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are established based on the neighboring relationship of each brain structural
area similar to [10]. FastsurferCNN, as a state-of-the-art brain region segmenta-
tion tool, enables to extract image-derived phenotypes across various anatomical
regions, which facilitates the development of models that consider the hetero-
geneity of brain anatomy and the specificity of each subject. We extract the
feature map output by the bottleneck of FastsurferCNN and interpolate it to
the original image size. Based on segmentation result, the first-order statistical
features are calculated from extracted feature map and T1 data at each brain
structural region, which are used as graph features. Consequently, a total of 361
features are assigned to each node. The final brain graph data can be expressed
as G = {Fg, E}, where E ∈ RN×N denotes the adjacency matrix, Fg ∈ RN×361

is graph feature, N is the number of nodes.

Multi-Head Dynamic Graph Convolution Network. In order to optimize
the broadcasting of the graph and extract informative graphic feature, a multi-
head dynamic graph convolution network is proposed, which has a linear layer
and three graph convolution layers. For each graph convolution layer, it learns
the mapping between the key kg ∈ RN×256 and the query qg ∈ RN×256 represen-
tation of updated graph feature Fg ∈ RN×256 by a linear layer. Then, the shapes
of query qg, key kg and updated node feature D are reshaped as [h,N, 256/h],
where h is the number of heads. The dynamic edge weight W ∈ Rh×N×N is
computed by measuring the similarity between qg and kg. Using the computed
dynamic edge weight W and fixed adjacency matrix E, the graph will be up-
dated and reshaped as G = {Fg, E|Fg ∈ RN×256} for the preparation of starting
the next graph convolution layer. Similar to [10], but we use sigmoid function in-
stead of softmax function to scale the calculated edge weight. The whole process
can be formulated as:

Fg =

(
R(E) • σ

(
qgk

T
g /

√
256

h

))
D (1)

Here σ() is the sigmoid function. R(E) ∈ Rh×N×N is an operation to unsqueeze
the adjacency matrix E in the first dimension and repeat it by h times. • denotes
the element-wise multiplication operator.

2.2 Missing Data Compensation Module

Partially Missing Data. Rather than naively filling in missing elements with
an average value or zero, a partially missing data compensation model is pro-
posed, which takes the raw clinical data X = {xi} and a missing vector V as
input. The missing vector V defines the missing values of the clinical data X.
V has the same size as X and missing elements are represented as ’1’ in V ,
and the remaining elements are ’0’. The tabular feature Ft(X,V ) extracted and
compensated by the model from the given clinical data {X,V } can be defined
as:

Ft(X,V ) = M(BN(Φ1(A(X) • V ) + Φ2(X))). (2)
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Here A is an auto-encoder built by two Multilayer Perceptrons (MLPs), ϕ1 is a
linear layer without considering the bias, ϕ2 represents a normal linear layer, and
M also is a MLP. Different with [10], the partially missing data compensation
model is trained in self-supervised manner, where a consistency loss Lcon based
on L1-norm is employed to make the tabular feature (Ft(Xc, Vc), Ft(Xm, Vm))
extracted from the complete clinical data {Xc, Vc} and the paired augmented
random missing {Xm, Vm} consistent. This can compensate for missing data
and makes the model more robust towards missing data. The consistency loss
Lcon is formulated as:

Lcon = ∥Ft(Xc, Vc)− Ft(Xm, Vm)∥1 (3)

Completely Missing Data. Clinical data plays a critical role in various med-
ical analyses and decision-making processes. However, access to such data may
sometimes be restricted or entirely absent. To address this challenge, a graphical-
to-tabular feature transfer model is proposed. This innovative approach is de-
signed to convert graphical features into a tabular format, thus facilitating the
use of graphical representations in scenarios where traditional clinical data is in-
accessible. The process begins with the utilization of a linear layer to aggregate
the graph features with 100 nodes into a singular global node representation.
Following this, an autoencoder comprised of two MLPs is employed to convert
this global node representation into tabular features. During this training phase,
an alignment loss function is implemented to minimize the discrepancy between
the tabular features predicted by the model and those extracted from the paired
clinical data through a partially missing data compensation model. This ensures
that the transformed tabular features closely mirror the valuable information
typically derived from comprehensive clinical data. The alignment loss Lalg is
defined as:

Lalg = ∥GT (Fg)− Ft(X,V )∥1 (4)

Here GT (Fg) is predicted tabular feature from graphical feature Fg by the the
proposed graphical-to-tabular feature transfer model GT .

2.3 Cross-Modal Attention based Fusion Model

Previous work simply multiplies or concatenates feature maps from the two
modalities, but this fusion approach cannot model the long-range relations be-
tween clinical tabular data and T1 image data. Inspired by [10], a cross-modal at-
tention based fusion model is proposed to fuse global tabular feature Ft ∈ R1×256

and local graphical feature Fg ∈ RN×256 to improve prediction performance. The
query qt ∈ R1×256 is the latent representation of the tabular feature Ft, and both
the key kg ∈ RN×256 and the value vg ∈ RN×256 are the latent representations
of the graphical feature Fg. Then the latent adaptation Fg→t ∈ R1×256 from
graphical feature to tabular feature is calculated via,

Fg→t = softmax

(
qtk

T
g√

256

)
vg (5)
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Meanwhile, a linear layer is employed to aggregate the features of 100 nodes
into a singular global node representation Fg

′ ∈ R1×256. Finally, we fuse the
global graphical representation Fg

′, the adaptation feature Fg→t, and the tabular
feature Ft via concatenation, which can be used as the input of an MLP for
classification.

2.4 Implementation Details

For class imbalance issue, the focal loss is employed as shown in Fig. 1, which is
formulated as:

Lfocal = −α (1− p)
γ
log (p) (6)

Here, p is the predicted probability of the correct class, α = 0.33 is the weighting
factor for each sample, γ = 0.05 is a tunable focusing parameter. The proposed
model is implemented on PyTorch library with one NVIDIA GPU (Quadro RTX
A6000). The model is trained for 100 epochs with a batch size of 16, using the
Adam optimizer (initial learning rate is 0.0005, decay of 0.85 per 5 epoch).

3 Experiments and Results

3.1 Dataset

The data utilized in our study comes from the public ADNI database [11]. 696
cases diagnosed with MCI who possessed baseline T1-weighted structural MRI
scans are collected. All MCI cases were categorized into two groups based on
clinical progression: (1) sMCI, encompassing individuals who did not progress
to AD within a three-year follow-up period. Additionally, subjects diagnosed
with MCI at least twice but eventually regressed to standard cognitive function
were also classified as sMCI; (2) pMCI, comprising individuals diagnosed with
MCI at the initial visit but exhibiting conversion to AD during longitudinal
follow-up visits within three years. Among the 696 cases, 471 were classified as
sMCI, while 225 were categorized as pMCI.

Simultaneously, we collected 12 demographic tabular records at basetime,
including age, sex, and 10 variables of clinical indicators: functional activities
questionnaire, AD assessment scale, mini-mental state examination, neuropsy-
chiatric inventory questionnaire, geriatric depression scale, memory function-
ing, language, visuospatial functioning, and executive functioning I&II. Despite
missing indicators in some cases, we included these records in our analysis. Ad-
ditionally, we collected 2174 pieces of complete MCI clinical data for training
the partially missing data compensation model.

3.2 Evaluation Metrics

Five-fold validation are used to evaluate the performance of our method, and six
metrics are used, including Balanced Accuracy (BAcc), Classification Accuracy
(Acc), Precision (Pre), Sensitivity (Sen), Specificity (Spe), and the area under
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Table 1. Quantitative results when only using clinical data as input

Methods BAcc Acc AUC Pre Sen Spe

SVM 0.8106 0.8521 0.9108 0.8211 0.6933 0.9279
LR 0.8108 0.8492 0.9120 0.8088 0.7022 0.9194

MLP 0.8202 0.8319 0.9051 0.7240 0.7867 0.8536

MIC+MLP [10] 0.8332 0.8434 0.9113 0.7378 0.8044 0.8620
PMDC+MLP 0.8869 0.9066 0.9519 0.8749 0.8311 0.9426

Table 2. Quantitative results when only using Image data. [I]:input with T1 image,
[F ]:input with FastsurferCNN-extracted feature, [f ]:input with cortex feature extracted
by Freesurfer

Methods BAcc Acc AUC Pre Sen Spe

3D-ResNet[I] 0.7358 0.8249 0.8823 0.9689 0.4845 0.9872
3D-ResNet[F ] 0.8981 0.9124 0.9681 0.8695 0.8578 0.9385

Transformer[f ] [16] 0.8693 0.8923 0.9398 0.8550 0.8044 0.9342
DGNR[F ] [10] 0.8875 0.8980 0.9429 0.8319 0.8578 0.9172
MHDGCN[F ] 0.9168 0.9282 0.9654 0.8952 0.8844 0.9492

the receiver operating characteristic curve (AUC). BAcc is a particularly impor-
tant metric used to assess the effectiveness of a model on imbalanced datasets,
ensuring that performance is not skewed by the disproportionate representation
of classes.

3.3 Comparison Results and Ablation Study

First, we evaluate the effectiveness of our missing data compensation module
when only clinical data is used as input. Table 1 presents the quantitative re-
sults. In this study, MLP is selected as baseline, and two traditional machine
learning method are selected as comparison methods, including Support Vector
Machine (SVM), Logistic Regression (LR). When without missing data com-
pensation, baseline just shows slightly superior performance than SVM and LR
with a BAcc of 0.8202. Considering missing data compensation, an MLP with
our proposed Partially Missing Data Compensation model (PMDC+MLP) and a
MLP with the Missing Information Compensation model (MIC+MLP) proposed
by Liu et al. [10] are studied. Encouragingly, PMDC+MLP yielded significant
improvements, achieving a BAcc of 0.8869. These results fully demonstrate the
effectiveness of our proposed missing data compensation model.

Table 2 illustrates the performance of various methods applied to T1 imag-
ing data. Initially, utilizing the TI image as input to the 3D-ResNet model
yielded a BAcc of 0.7358. Then, taking FastsurferCNN-extracted feature as
input, 3D-ResNet significantly improved BAcc, reaching 0.8981, as shown in
the 2nd row. This improvement suggests that segmentation tasks can provide
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Table 3. Quantitative results when using both Image data and clinical data. ∗: clinical
data is completely missing .

Methods BAcc Acc AUC Pre Sen Spe

DGFusion [10] 0.8983 0.9095 0.9548 0.8544 0.8667 0.9299
Ours 0.9279 0.9354 0.9765 0.8967 0.9067 0.9491

DGFusion∗ [10] 0.6989 0.7888 0.7807 0.8721 0.4444 0.9534
Ours∗ 0.9235 0.9325 0.9712 0.8959 0.8978 0.9491

Table 4. Ablation study results

Methods BAcc Acc AUC Pre Sen Spe

W/O PMDC 0.9114 0.9225 0.9671 0.8810 0.8800 0.9428
W/O MHDGCN 0.9131 0.9139 0.9703 0.8380 0.9111 0.9152

W/O CAF 0.9161 0.9211 0.9784 0.8631 0.9022 0.9301

Our 0.9279 0.9354 0.9765 0.8967 0.9067 0.9491

high-quality features for downstream classification task. In comparison, dynamic
graph neural representation model (DGNR) proposed by [10] achieved an BAcc
of 0.8875, while our proposed Multi-Head Dynamic Graph Convolution Net-
work (MHDGCN) achieved an accuracy of 0.9168.

Table 3 illustrates the fusion model where taking both images and clinical
data as input. When clinical data partially missing with a missing rate of 0.33,
the DGFusion method [10] achieves a BAcc of 0.8983, and our methods achieves
a higher BAcc score of 0.9279. When clinical data are not available, the per-
formance of DGFusion drops dramatically, with BAcc dropping from 0.8983 to
0.6989. In contrast, our method can still provide a good performance, achieving
a BAcc score of 0.9235.

Finally, we conduct an ablation study to evaluate the effectiveness of each
component in our proposed method. Table 4 shows the ablation experiment re-
sults, where CAF means our proposed cross-modal attention based fusion model.

4 Conclusion

In summary, our fusion model, adept at handling missing data, offers a promising
avenue for predicting MCI progression, crucial in AD diagnosis. Experimentation
on the ADNI dataset showcased its superior accuracy, even in scenarios with in-
complete clinical data. Outperforming existing methods, our model demonstrates
robustness and potential for real-world application. Future research could explore
additional data modalities and validate our approach on larger datasets, aiming
to translate these advancements into practical tools for early AD detection and
intervention.
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