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Abstract. In the rapidly advancing field of medical image analysis, In-
teractive Medical Image Segmentation (IMIS) plays a crucial role in
augmenting diagnostic precision. Within the realm of IMIS, the Seg-
ment Anything Model (SAM), trained on natural images, demonstrates
zero-shot capabilities when applied to medical images as the foundation
model. Nevertheless, SAM has been observed to display considerable sen-
sitivity to variations in interaction forms within interactive sequences, in-
troducing substantial uncertainty into the interaction segmentation pro-
cess. Consequently, the identification of optimal temporal prompt forms
is essential for guiding clinicians in their utilization of SAM. Furthermore,
determining the appropriate moment to terminate an interaction repre-
sents a delicate balance between efficiency and effectiveness. To provide
sequential optimal prompt forms and best stopping time, we introduce
an Adaptive Interaction and Early Stopping mechanism, named AIES.
This mechanism models the IMIS process as a Markov Decision Pro-
cess (MDP) and employs a Deep Q-network (DQN) with an adaptive
penalty mechanism to optimize interaction forms and ascertain the op-
timal cessation point when implementing SAM. Upon evaluation using
three public datasets, AIES identified an efficient and effective prompt
strategy that significantly reduced interaction costs while achieving bet-
ter segmentation accuracy than the rule-based method.

Keywords: Interactive Medical Image Segmentation - Reinforcement
Learning - Early-Stopping - Reward Shaping.

1 Introduction

Deep learning-based segmentation has revolutionized various domains, includ-
ing scene understanding, medical image analysis, and augmented reality [15].
Numerous algorithms have been proposed and evaluated [19, 6]. However, their
success often hinges on the availability of large, well-annotated datasets. In the
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Fig. 1: The architecture of the proposed AIES mechanism: ATES consists of two
primary components: the general interactive segmentation model SAM and an
RL-based agent. The RL-based agent processes input states, including original
medical image slices, previous logits, and prior prompts, subsequently generat-
ing recommendations for subsequent interactions within clinical settings. If not
terminal, clinicians give SAM new prompts. The medical image slices undergo
encoding through SAM’s image encoder, while SAM’s prompt encoder encodes
the prompts provided by clinicians. Subsequently, SAM’s lightweight mask de-
coder generates segmentation logits for the next interaction.

realm of medical imaging, the scarcity of data and ambiguous boundaries be-
tween regions present significant obstacles for these algorithms [25].

Interactive Medical Image Segmentation (IMIS) is a promising approach
that enhances model accuracy through human feedback [13]. This feedback, in
the form of user corrections or refinements, informs model iterations and up-
dates predictions. User guidance may occur during training or application via
clicks, scribbles, or other interactions. The recently introduced Segment Any-
thing Model (SAM) represents a significant leap in IMIS due to its zero-shot
generalization capability [9]. The integration of human feedback with SAM en-
hances prompt-driven segmentation, opening new avenues in the field [26]. SAM
has been evaluated across various anatomical structures, imaging modalities,
and ten public medical image segmentation datasets [16,12]. However, despite
its promise, SAM often performs suboptimally on medical datasets, with a re-
ported mean Dice score of 58.52This limitation has prompted the development
of MedSAM, which aims to enhance diagnostic tools and personalize treatment
plans by tailoring SAM to specific medical tasks. Such fine-tuning has led to sig-
nificant improvements, with Dice score increases of 4.39% and 6.68% for ViT-B
and ViT-H, respectively [5]. These findings highlight the effectiveness of SAM
in medical image segmentation and the benefits of fine-tuning for IMIS.
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However, SAM’s zero-shot capability shows significant variability in medi-
cal versus natural image segmentation, mainly due to its sensitivity to various
prompt forms such as points or bounding boxes [5]. This issue is especially pro-
nounced in the IMIS context [21]. Two main factors drive this issue: First, the
interdependence of segmentation stages means prompt choices in one stage affect
the next. Second, variability and randomness in human feedback can overlook
how prompt choices impact performance and inter-prompt relationships. In clini-
cal settings, determining the optimal moment to conclude an interaction remains
challenging, often resulting in wasted efforts and reduced trust if outcomes are
suboptimal [17].Conversely, an ineffective interaction strategy may fail to meet
desired outcomes. There’s a need for interactive strategies to use SAM more
efficiently and effectively. Here, efficiently refers to minimizing the number
of interactions required to attain satisfactory segmentation results, reducing the
time and effort expended by users. Simultaneously, effectively signifies the ca-
pacity to generate accurate and reliable segmentation outcomes that fulfill users’
expectations and clinical requirements.

The Temporally-Extended Prompts Optimization (TEPO) framework was
introduced to adaptively offer suitable prompt forms for SAM’s varying inter-
action sensitivity [21]. However, TEPQ’s focus on fixed-length interactions risks
efficiency by overlooking the potential benefits of adaptive interaction rounds
and termination strategies. In contrast, we propose an Adaptive Interaction
and Early Stopping (AIES) mechanism, which enhances both the efficiency
and effectiveness of prompt strategies by considering not just the form of in-
teraction, but also identifying the optimal termination timestep. Our approach
includes several early termination strategies that optimize the segmentation pro-
cess with SAM, ensuring the interaction ceases at the most beneficial point to
prevent performance degradation and minimize computational waste. Utilizing
reinforcement learning (RL), a proven method for sequential decision tasks across
multiple domains [18, 10, 11, 7], we frame the issue as a Markov Decision Process
(MDP). Through RL, the AIES mechanism assists users in choosing the optimal
prompt form and deciding when to end interactions, effectively boosting SAM’s
performance and segmentation accuracy. To align improvements in dice score
with reduced interaction costs, the reward function integrates two components:
a positive reinforcement signal that enhances dice scores, and a penalty that cur-
tails interaction costs. This design enables the AIES mechanism to identify the
most suitable prompt forms and determine the appropriate termination timing.

The contributions of this paper are threefold: (1) Sequential prompt
strategy optimization: We propose a novel approach that leverages reinforce-
ment learning to optimize interaction choices in the context of IMIS with SAM.
By formulating the interaction selection process as an MDP, our method effec-
tively determines the optimal prompt forms and termination timesteps, thereby
significantly enhancing SAM’s zero-shot performance. (2) Adaptive penalty
for early termination: Adaptive penalty helps users flexibly choose the de-
sired number of interaction steps and obtain better segmentation results under
the same interaction cost. (3) Validation of generalization: Integrating SAM
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with reinforcement learning and early stopping, we prove our effectiveness on
various medical image datasets, showcasing their wide applicability and superior
performance in segmentation.

2 Method

To enhance the efficiency and effectiveness of SAM for clinical practitioners,
this paper introduces the ATES mechanism. AIES uses adaptive feedback from
human experts to choose the best prompt forms and termination timing. It treats
guiding clinicians as a MDP. AIES boosts efficiency and effectiveness through a
reward system. This system values changes in the Dice coeflicient and interaction
costs. Reinforcement learning is used for training. A comprehensive illustration
of the AIES mechanism can be found in Fig. 1.

2.1 MDP Modeling of AIES

Considering the ability of reinforcement learning to model dynamic uncertainty
on sequential decision-making tasks|20], our introduced approach AIES formal-
izes IMIS as an MDP. In this MDP framework, an agent (responsible for guiding
the user in selecting prompt forms and deciding on termination) interacts with
the environment (user’s interactive medical image segmentation with SAM) in
discrete time steps. At each time step t, the agent observes a state s;, performs
an action a;, and receives a reward r;. The environment then determines the
next state s;;1 based on the current state and the action taken. The MDP
components include

State Space (S): At each discrete time step ¢, the state S; is a composite entity
consisting of the current medical image slice I, the segmentation logits P;_; from
the previous time step, and the set of interaction prompts U;_.

Action Space (A): The action space encompasses various prompt forms and
an early termination action. Specifically, the action space A is defined as A =
{1,2,3}, where Action 1 means plotting a bounding box to identify the target
object. Action 2 means clicking the center of the error region in the previous
segmentation prediction. Action 3 signifies stopping the training process.
Reward Function (R): The reward at each timestep, Ry, contains two parts:
the change in dice coefficient and penalty. the change in dice coefficient ADice;
is computed as the change in the Dice coefficient between SAM’s prediction logit
and the ground truth, across timesteps:

ADice; = Dice(P;, G) — Dice(P;—1, G), (1)

where G denotes the ground truth labels, Dice(P;, G) measures the similarity
between the current prediction P; and the ground truth, and Dice(P;_1, G) eval-
uates the similarity for the previous prediction.

Considering that after some interactions, the results of SAM do not signif-
icantly enhance, which decreases the efficiency of interaction with SAM, AIES
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introduces a penalty for too many interactions. The reward at timestep ¢ as:
Rt :ADicet—h(Pt,Pt— 1,G)7 (2)

where h(P;, P, — 1,G) is a penalty function adjusting the penalty based on
the current prediction, previous prediction, ground truth, and we will introduce
this penalty in detail in the following subsection. This mechanism encourages
the timely cessation of interaction, thereby ensuring high accuracy while mini-
mizing unnecessary uncertainty. The adaptive mechanism optimizes the balance
between efficiency and effectiveness.

2.2 Adaptive Penalty

In some situations, the prompt may not contribute to the incremental improve-
ment of interactive segmentation performance, rendering such interventions inef-
fective and leading to the misallocation of valuable clinical resources. To mitigate
this inefficiency, we propose the implementation of a penalty mechanism specif-
ically designed to reduce the number of interaction steps needed. Specifically,
ATES introduces an adaptive penalty with the objective of expediting the termi-
nation of the training process. This mechanism is represented by the following
equation:

A, if Dice(P;, G) < e,
A + max(0, ADice; — «), otherwise,

h(Pi—1, P, G) = { (3)
where ADice; = Dice(P;, G) — Dice(P,—1,G), and « serves a lower threshold
for additional penalties. According to the equation, a constant penalty, A, is
applied when the Dice coefficient is below the extra penalty bound e, and the
dice coefficient increase is lower than a. Nevertheless, an additional penalty
is added. This adaptive penalty aims to optimize efficiency by considering the
current segmentation results.

2.3 Optimization via Deep Q-Networks

Within the ATES framework, the reinforcement learning paradigm is employed to
refine the strategy m, which maps states to actions, maximizing the cumulative
reward over time. One popular approach to achieve this is by approximating
the Q-function, Q(s,a;6), which estimates the expected cumulative reward for
taking action (a) in the state (s) and following the strategy 7 afterward. Deep
Q-Networks (DQNs) are a type of RL algorithm that uses deep neural networks
to approximate the Q-function. The loss function is formulated as follows:

L(@) = E(s,a)wﬂ' [(Q(S, a; 0) - (rt + ﬂ}/n}ﬁ“XQ(sla a/; 0/)))2] i (4)

where r; denotes the immediate reward after the execution of action a in the state
s, and ~ represents the discount factor, emphasizing future rewards’ importance.
The term 6’ refers to the target network’s parameters, updated periodically for
learning stability.
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Table 1: Dice coefficient score across strategies for Spleen [1], Polyp [8, 4,23, 22,
24], and brats2020 [14]. AIES(x) denotes the AIES strategy with average actual
interaction steps x, and AIES(6) is trained without action ‘stop’.

Spleen Polyp- Brats2020

Length Policy Dice ‘ Length Policy Dice ‘ Length Policy Dice
Box center 0.5548 Box center 0.7888 Box center 0.6901

1 Center 0.5578| 1 Center 0.6444 1 Center 0.4657
Box center 0.6614 Box center 0.8158 Box center 0.6547
Center 0.8197 Center 0.7354 Center 0.6213

2 Random 0.4232 | 2 Random 05243 | 2 Random 0.4335
ATES(2.3298) 0.8350 AIES(1.549) 0.8312 AIES(1.7207) 0.7144
Box center 0.6462 Box center 0.8564 Box center 0.6890
Center 0.8705 Center 0.8174 Center 0.7195

3 Random 0.5951 3 Random 0.6661 3 Random 0.5800
AIES(2.8404) 0.8576 AIES(2.3478) 0.8589 AIES(2.7041) 0.7489
Box_ center 0.7740 Box_ center 0.8774 Box_ center 0.7478
Center 0.9012 Center 0.8514 Center 0.7710

4 Random 0.6806 | 4 Random 0.7345 | 4 Random 0.6327
AIES(3.5532) 0.8825 AIES(3.7719) 0.8781 AIES(3.8366) 0.7649
Box_ center 0.7740 Box_ center 0.8774 Box_ center 0.7791
Center 0.9084 Center 0.8744 Center 0.7988

5  Random 0.7188 | ® Random 0.7794 | 5  Random 0.6913
AIES(4.2553) 0.8873 AIES(4.3747) 0.8790 ATES(4.7651) 0.7889
Box_ center 0.8484 Box_ center 0.9012 Box_ center 0.8062

) Center 0.9100 Center 0.8847 . Center 0.8176
6 Random 0.7890 | 6  Random 0.8427 | 6 Random 0.7914
AIES(6) 0.8922 AIES(6) 0.9046 AIES(6) 0.8203

3 Experiments

This section provides the experimental results of our method and other rule-
based strategies on different datasets. The datasets and details of the experi-
ments and evaluation metrics are introduced as follows. The experiments aim to
explore: 1) Whether SAM is sensitive to prompts forms in the context of IMIS?
2) The effectiveness of AIES across various medical imaging datasets. 3) Is the
adaptive penalty more effective than the constant penalty? 4) Can ATES reduce
misunderstanding cases?

- Datasets: For brain tumor segmentation, we used the Brats2020 dataset from
the BraTS Challenge [14, 2, 3]. It includes training, validation, and test sets with
four MRI modalities, each sized 240 x 240 x 155, applying data augmentation
and preprocessing to enhance images. For colorectal cancer detection, we utilized
Polyp datasets from Kvasir-SEG [8] and CVC-ClinicDB [4], with additional test-
ing on five databases [8,4,23,22,24] for comprehensive evaluation. The Spleen
dataset [1] provided CT scans for segmentation algorithm development. ATES
were tested on diverse medical image datasets. The BraTS dataset, known for
its complexity, was the primary focus due to its significance in medical imaging.
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- Implementation Details & Evaluation Metrics: Images are standardized
to 200 x 150 during preprocessing. Training images are augmented with flips,
rotations, noise, and transformations for better generalization, while test images
are cropped and scaled for accurate evaluation. Total training epochs is 100
epochs, and 2000 steps in each epoch, updating the Q-network every 100 steps.
We utilized the Adam optimizer with a le — 5 learning rate, v of 0.9, and a
64 batch size. For penalty, we set the extra penalty bound € as 0.8, and « is
set at 0.2, and penalty values were optimized via grid search, we will introduce
it in detail in the following subsection. Performance was evaluated using the
Dice coefficient to compare segmentation with ground truth where the higher
Dice coefficient indicates better segmentation, and step lengths to assess the
efficiency of early stopping.

- Comparison of results across various datasets: To validate the effective-
ness of AIES across various medical imaging datasets, we engaged three partic-
ularly challenging datasets: Spleen [1], Polyp (8,4, 23,22, 24], and brats2020 [14]
among various strategies (Box-center, Center, and Random Policy). The
Box-center strategy involves selecting a bounding box initially, followed by
choosing the center of the false area. The Center strategy solely selects the
center of the false area, while the Random strategy randomly selects a bound-
ing box, center point, or terminal, each with varying probabilities. We intro-
duced perturbations, such as random offsets of 10 pixels, for both center and
box prompts to evaluate the robustness of these strategies. In our work, users
are only required to click the center point of the largest error area. A compre-
hensive comparison of the results can be found in Table 1.

Different prompt forms influence SAM results, highlighting its sensitivity to
prompt formats. AIES notably outperformed in Dice scores, achieving 0.9046 on
Polyp and 0.8203 on Brats2020, although it was slightly behind on the Spleen
dataset compared to the Center strategy but required fewer interactions.

- Adaptive penalty results: To minimize futile interactions, the RL agent can
employ a simple strategy like AIES-Constant, which uses a consistent penalty
per step. However, this approach makes controlling the average step length chal-
lenging, as illustrated in Figure 2 where the relationship between penalty and
average step length is nonlinear, particularly unstable around a penalty of 0.02.
In contrast, AIES-Adaptive adopts a more dynamic penalty mechanism that con-
trols average interaction lengths more predictively. This adaptability not only
allows users to better balance performance and efficiency but also improves per-
formance consistency across the same number of steps. In essence, the adaptive
penalty offers easier customization and typically performs better, catering to
diverse user needs.

- Misunderstanding statistical results: In the context of IMIS, the interac-
tive algorithm may erroneously interpret the significance of the interaction, lead-
ing to inaccurate adjustments of the interaction results, a phenomenon referred
to as misinterpretation|[20]. In this study, instances where the Dice coefficients
exhibit a reduction of greater than 0.1 following interaction are considered mis-
interpretations. This experimental setup is illustrated in Fig. 3. The histogram
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Fig.2: The top plot shows Av-
erage length vs. Dice coefficient
(LOWESS smoothed). The bottom
plot shows Penalty vs. average length
with constant-penalty in green and
adaptive-penalty in blue, with fitted
lines. The horizontal axis represents
average effective step length.

Fig. 3: Misunderstandings and the cor-
responding performance under dif-
ferent numbers of interactions: The
histogram represents the percentage
of misunderstanding under different
strategies, and the points represent the
corresponding dice.

presents the percentage of interactive misinterpretations of total interactions at
the 2nd, 4th, and 6th steps. Meanwhile, the scatter plot shows average Dice
scores for images without interaction stops at the 2nd, 4th, and 6th steps. The
misinterpretation rate of ATES is lower than that of the Center and Box-center
strategies and higher than the random strategy. However, it’s important to note
that AIES outperforms the random strategy in overall effectiveness. The random
strategy, which fails to learn effective interaction forms, exhibits fewer misinter-
pretations due to its conservative nature. This indicates that AIES effectively
reduces misunderstandings while achieving notable performance.

- Qualitative experimental analysis: The Fig. 4 visualize a comparison of
strategies including Center, Box-center, Random, and AIES. ATES outperforms
others by finding optimal stopping points for higher Dice coefficients. Unlike the
Random strategy terminates too early, AIES stops judiciously, showcasing its
efficiency and effectiveness.

4 Conclusion

This study introduces the AIES mechanism to aid users unfamiliar with SAM in
IMIS. AIES optimizes interaction timing and temporal prompt forms with SAM,
enhancing efficiency and effectiveness. Experiments demonstrate that SAM is
sensitive to different sequential prompt forms. Our AIES method effectively finds
an interaction strategy across various datasets, not only reducing interaction
costs but also improving interactive segmentation results with fewer misunder-
standings. In addition, the adaptive penalty in the reward function not only
adjusts interaction costs more flexibly but also enhances performance, paving
the way for further method optimizations.
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Fig. 4: Visualization of strategies involves Star symbols for center points, green
rectangles for bounding box prompts, and red rectangles for actual interaction
steps. Subsequent to the red box, counterfactual interactions occur, where inter-
actions continue even though they were actually stopped. In these counterfactu-
als, the continued interaction specifically uses the "center" form.
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