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Abstract. Accurate vessel segmentation from X-ray Angiography (XA)
is essential for various medical applications, including diagnosis, treat-
ment planning, and image-guided interventions. However, learning-based
methods face challenges such as inaccurate or insufficient manual anno-
tations, anatomical variability, and data heterogeneity across different
medical institutions. In this paper, we propose XA-Sim2Real, a novel
adaptive framework for vessel segmentation in XA image. Our approach
leverages Digitally Reconstructed Vascular Radiographs (DRVRs) and a
two-stage adaptation process to achieve promising segmentation perfor-
mance on XA image without the need for manual annotations. The first
stage involves an XA simulation module for generating realistic simulated
XA images from patients’ CT angiography data, providing more accu-
rate vascular shapes and backgrounds than existing curvilinear-structure
simulation methods. In the second stage, a novel adaptive representa-
tion alignment module addresses data heterogeneity by performing intra-
domain adaptation for the complex and diverse nature of XA data in
different settings. This module utilizes self-supervised and contrastive
learning mechanisms to learn adaptive representations for unlabeled XA
image. We extensively evaluate our method on both public and in-house
datasets, demonstrating superior performance compared to state-of-the-
art self-supervised methods and competitive performance compared to
supervised method.

Keywords: Vessel Segmentation · Domain Adaptation · Digitally Re-
constructed Vascular Radiographs.

1 Introduction

X-ray Angiography (XA) is a common medical imaging modality for the di-
agnosis and treatment of cardiovascular diseases. Vessel segmentation from XA
images can further highlight vascular positions and structures, which is beneficial
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for relevant procedures. While supervised segmentation methods have demon-
strated success in 2D/3D vascular segmentation across various anatomical re-
gions [11, 15], their application to XA poses challenges due to the scarcity of
extensive datasets and annotations required for training. The inherently noisy
visual appearance of XA images, coupled with the complex anatomical back-
ground and varying vessel geometries, results in annotation efforts that are
labor-intensive and time-consuming. Moreover, existing unsupervised methods
encounter difficulties when applied to medical vessel images, primarily due to
the intricate nature of vascular structures and the variability in imaging condi-
tions [1, 6].

In recent years, some self-supervised methods have been proposed for XA
vessel segmentation. A self-supervised vessel segmentation approach [5] has been
presented to learn vessel representations, which requires two different adversarial
networks to segment vessels, which leads to increasing training complexity. Then
a non-iterative version of diffusion-based generative model [4] was proposed and
successfully applied to self-supervised vessel segmentation. However, this model
requires significant computational resources and time for training. Both meth-
ods utilize mathematically generated fractal shapes [13] to synthesize vessel-like
masks for fake angiogram generation, but these fractal shapes exhibit significant
morphological discrepancies compared to realistic vessels. And their methods
are constrained by the requirement for clean background images as input, thus
greatly limiting their applicability. A self-supervised curvilinear object segmen-
tation method [10] was proposed, which presents an enhanced fractal generation
system and discards the usage of background images. But it employs Fourier
domain adaptation [12] for XA image generation, which imposes limitations on
generation capabilities and necessitates additional hyperparameter selection. Re-
cently, a primary but interesting study was conducted for vessel segmentation,
which integrates with adversarial learning and self-supervised learning to trans-
fer the knowledge learned from Digitally Reconstructed Vascular Radiographs
(DRVRs) to real XA images [16]. However, there is still much room for improve-
ment in performance.

In this paper, we reformulate vessel segmentation for unlabeled XA data
into a two-stage domain adaptation procedure to improve segmentation perfor-
mance. Our contributions are as follows. (1) A novel adaptive representation
alignment technique is introduced to address data heterogeneity by performing
intra-domain adaptation for the complex and diverse nature of real XA data in
different settings. (2) To address the limitations imposed by fractals, we lever-
age clinical knowledge and XA imaging principles to generate DRVRs and refine
their resemblance to real XA images using a generative adversarial network.
(3) We build and release the first huge simulated coronary artery XA dataset4,
which contains DRVR images and corresponding vessel masks. (4) Our frame-
work surpasses state-of-the-art self-supervised methods by a large margin and
achieves competitive performance to supervised method on a public dataset and
two in-house datasets.

4 DRVR Dataset: https://github.com/BaochangZhang/XSim2Real
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Fig. 1. The overview of our proposed XA-Sim2Real framework. A image means real
XA image, B image means simulated XA image, C image means DRVR image, and *
means augmented image.

2 Method

An overview of the proposed framework is illustrated in Fig. 1, which can be
mainly divided into four parts that are introduced hereafter.

2.1 XA Simulation Module

DRVR Generation. Inspired by Diff-DeepDRR[14], DRVR generation pro-
cedure is developed for more realistic XA simulation than fractal-based meth-
ods [10], as shown in Fig. 1(a). For the DRVR generation process, given a CTA
data V, an available X-ray imaging system Ω and the pose parameters θ, the
density at detector point p is calculated as:

D(p) =

∫
Po(E)exp

{
−

∑
m

∑
Ωp(θ)

δ(m,G(M(V)|Ωp(θ)))

ϕm(E)G(ρ(V)|Ωp(θ))∆s
}
dE

(1)

where Po(E) means the X-ray beam spectra obtained using SPEKTR3.0 soft-
ware [8]. δ(·, ·) is the Kronecker delta. M(V) are decomposed materials’ mask,
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i.e., bone, blood vessel with contrast agent, soft tissue and air. ϕm(E) is the
material and energy dependent linear attenuation coefficient [3]. The attenua-
tion coefficient of blood vessel with contrast agent is the weighted average of
the attenuation coefficients of blood and iodine, where the weight of the iodine’s
attenuation coefficient is 0.2. ρ(V) is the mass density computed from HU val-
ues. Ωp(θ) ∈ RN×3 means the world coordinates of N sampling points on the
ray from the source to detector point p. ∆s is the sampling step along the ray.
G(∗|Ωp) is a 3D gird sampling function based on a bilinear interpolation scheme,
which will output the values of N sampling points on the given volume ∗. Based
on the public ASOCA dataset [2], A DRVR dataset containing 19384 images and
corresponding masks is generated following 11 standard clinical coronary artery
view poses, all in a resolution of 512 × 512 pixels.

DRVR2XA Domain Transfer. To reduce the inter-domain gap between
DRVR images and XA images, Contrastive Unpaired Translation (CUT) model [7]
is employed to perform a domain transfer, which is trained using our generated
DRVR dataset and all XA images from the public XCAD dataset [5]. Fully fol-
lowing CUT, adversarial loss Ladv and multi-layer patch-wise contrastive loss
Lmpc are utilized for training. Some DRVR images and corresponding simulated
XA images are presented in Fig. 1(b). Note that this is a one-time process and
we do not retrain or refine CUT specifically for the new XA dataset.

2.2 Segmentation Network Pre-training

Unet [9] is used as vessel segmentation network, and it is pre-trained using sim-
ulated XA images and vessel masks inherited from the DRVR dataset, as shown
in Fig. 1(c). Dice loss function Ldice and binary cross entropy loss function Lbce

are used as segmentation loss Lseg. Meanwhile, a consistency loss Lcon based on
L1-norm is employed to make the prediction maps (PB∗ , PB) learned from the
augmented input and the original input consistent, thereby making the model
more robust and achieving better generalization capabilities.

To improve the feature distinctiveness between vessel and background, a
pixel-wise contrastive loss Lpwc is applied to the feature maps extracted by
the third-to-last convolution layer in Unet. Utilizing ground truth mask M , we
sample n vessel features from the feature map FB extracted from non-augmented
input and treat them as a query set {qi} ∈ fv. A paired positive set {k+i } ∈ fv+

is collected from the feature map FB∗ extracted from augmented input at the
corresponding vessel positions. The negative set {k−j } ∈ fv− is randomly sampled
from the feature maps (FB∗ , FB) extracted from both input at the background
positions. Then the pixel-wise contrastive loss Lpwc is formulated as,

Lpwc = − 1

n

n∑
i=1

{
log

exp(qi · k+i /τ)
exp(qi · k+i /τ) +

∑w
j=1 exp(qi · k

−
j /τ)

}
(2)
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where n is set to 1024, w is set to 2048, and the temperature parameter τ is set
to 0.1. And the final loss Lpretrain is defined as,

Lpretrain = Ldice(M,PB) + Lbce(M,PB) + Lcon(PB , PB∗) + Lpwc (3)

2.3 Adaptive Representation Alignment

Our objective is to tackle the question: "How can we ensure that a pretrained
vessel segmentation model performs effectively on a new real XA dataset without
the need for manual annotations?". To this end, we propose adaptive represen-
tation alignment shown in Fig. 1(d), as a means to mitigate intra-domain gap
between simulated XA data and various sources of real XA data, focusing on
aligning their representations. The segmentation network is initialized with pre-
trained weights. Subsequently, both simulated XA images and their augmented
versions, alongside real XA images and their augmented versions, are simultane-
ously utilized as inputs for the segmentation network. The segmentation loss Lseg

employed in Section 2.2 is retained for optimizing the segmentation outcomes of
both the simulated XA image and its augmented version. And the consistency
loss Lcon is also retained, yet this time it is applied between the prediction maps
(PA∗ , PA) learned from the augmented XA input and the original XA.

To minimize the average distance between features of simulated XA and real
XA, and enhance the feature distinctiveness between vessels and backgrounds
on XA, two additional loss functions are proposed and applied to the feature
maps (FA, FB) extracted by the third-to-last convolution layer in Unet. First,
class centroid feature alignment loss Lcfa is introduced to perform representa-
tion alignment on the centroids of the vessel and background features between
simulated XA and real XA, respectively. For simulated XA flow, the mini-batch
vessel class centroid feature f̃Bv can be calculated by averaging the features of
all vessel positions as indicated by the ground truth mask M , similarly, the mini-
batch background class centroid feature f̃Bb follows the same process. For real
XA flow, the prediction map PA is used to distinguish vessel and background
positions to calculate mini-batch class centroid feature f̃Av and f̃Ab, respectively.
And the overall class centroid features are updated using an exponentially mov-
ing average, which is defined as,

fDc = (1− α)fDc + αf̃Dc (4)

where fDc is the centroid feature of class c ∈ {v, b} from the domain D ∈ {A,B},
and α is set to 0.9. Therefore, the class centroid feature alignment loss Lcfa is
formulated as,

Lcfa = ∥fAv − fBv∥2 + ∥fAb − fBb∥2 (5)

Second, class centroid contrastive loss Lccc is proposed, which is formulated as,

Lccc = − 1

n

n∑
i=1

{
log

exp(fBv · hi/τ)

exp(fBv · hi/τ) +
∑w

j=1 exp(fBv · gj/τ)

}
(6)
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where the vessel set {hi} is collected from the feature maps FA and FB at the
corresponding vessel positions. And the background set {gj} is sampled from
the feature map FB at the background positions.

Meanwhile, we utilize adversarial learning to explicitly align the prediction
space distribution of real XA images and simulated XA images. A discriminator
D is employed to evaluate the quality of the segmentation result. It takes not
only the prediction maps as input but also the gradient magnitude maps of XA
images. The prediction space adversarial loss Lpa for the discriminator is defined
as,

LD
pa = E[log(D(PB∗ ,G(B∗)))] + E[log(1−D(PA∗ ,G(A∗)))] (7)

Where G(A∗) and G(B∗) are the gradient magnitude maps of the A∗ images and
the B∗ images, respectively. And Lpa for the segmentation network S is defined
as,

LS
pa = E[log(D(PA∗ ,G(A∗)))] (8)

Therefore, the total loss function for segmentation network is summarized as,

Ltotal = 2.5LS
pa + 0.5Lccc + 5Lcfa + 2Lseg + 100Lcon (9)

2.4 Implementation Details

The proposed framework is implemented on PyTorch library with one NVIDIA
GPU (Quadro RTX A6000). For the pre-training step, the model is trained for
30 epochs on DRVR dataset with a batch size of 16, using the Adam optimizer
(initial learning rate is 0.001, decay of 0.75 per 3 epochs). For the adaptive
representation alignment training step, the model is trained for 100 epochs on
XA dataset with a batch size of 16, using the Adam optimizer (initial learning
rate is 0.0001, decay of 0.85 per 10 epochs).

For the domain randomization, each effect is conducted with probability 50%,
and only one option is randomly selected for each effect. The employed effects
are as follows, (a) random intensity transformation with four options, including
random adding offset, random gamma correction, non-linear transformation and
contrast-limited adaptive histogram equalization; (b) random noise adding with
three options, including Gaussian noise, Poisson noise and speckle noise; and (c)
random crop and resize.

3 Experiments and Results

3.1 Dataset and Evaluation Metrics

Our method is evaluated on three XA datasets. (i) The public XCAD dataset [5]
contains a training set of 1621 XA images and 1621 background images (i.e.,
X-ray image without contrast agent), and a test set of 126 XA images with
vessel annotations. (ii) An in-house I-XA dataset contains a training set of 90
XA images and 90 background images, and a test set of 70 XA images with
vessel annotations. (iii) Another in-house II-XA dataset contains a training set
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Fig. 2. Visualization results of the XA images, the labels, and the segmentation from
the three datasets (from top to bottom): XCAD, I-XA, and II-XA examples.

of 80 XA images and a test set of 70 XA images with vessel annotations. All
images in the three datasets have a resolution of 512 × 512 pixels.

Six metrics Jaccard Index (Jac.), Dice Coefficient (Dice), Accuracy (Acc.),
Sensitivity (Sen.), Precision (Pre.) and Specificity (Spe.) are used to evaluate
the performance of coronary vessel segmentation, following the paper [5].

3.2 Comparison with State-of-the-art

Table. 1 presents a comparison of coronary vessel segmentation performance
across three XA datasets between our proposed XA-Sim2Real method and state-
of-the-art self-supervised vessel segmentation techniques, including SSVS [5],
DARL [4], and FreeCOS [10]. Initially, we benchmark our method against the
supervised UNet [9], trained using test sets from the three XA datasets and eval-
uated through 5-fold cross-validation. Although the supervised UNet achieves
slightly higher performance than our method on the XCAD and II-XA datasets,
its reliance on manually annotated vessel data for training poses a significant
limitation. In contrast, our method achieves competitive performance on these
datasets without the need for manual annotations. Notably, it demonstrates su-
perior performance than UNet on the I-XA dataset with a dice score 0.727. When
compared to self-supervised methods such as SSVS, DARL, and FreeCOS, our
method exhibits significantly superior performance across all metrics on the three
datasets. Notably, SSVS and DARL necessitate training with clean background
images, limiting their applicability to II-XA data. Moreover, Fig. 2 visually de-
picts the segmentation results of XA images from the three datasets. As evident
from Fig. 2, our method produces segmentations with richer vessel representation
and reduced background noise.
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Table 1. Comparison results on three XA datasets.

Dataset Method Jac. Dice Acc. Sen. Spe. Pre.

XCAD

Unet [9] 0.632±0.082 0.772±0.066 0.977±0.006 0.766±0.099 0.989±0.005 0.789±0.077

SSVS [5] 0.389±0.062 0.557±0.066 0.948±0.008 0.630±0.074 0.967±0.006 0.510±0.095

DARL [4] 0.481±0.095 0.644±0.090 0.962±0.014 0.657±0.095 0.980±0.010 0.648±0.132

FreeCOS [10] 0.524±0.083 0.684±0.073 0.966±0.011 0.707±0.094 0.980±0.010 0.671±0.090

Our 0.631±0.077 0.771±0.061 0.975±0.006 0.810±0.092 0.985±0.005 0.742±0.067

I-XA

Unet [9] 0.561±0.101 0.713±0.092 0.975±0.008 0.726±0.118 0.987±0.007 0.723±0.120

SSVS [5] 0.329±0.073 0.490±0.090 0.954±0.011 0.513±0.101 0.976±0.008 0.497±0.133

DARL [4] 0.428±0.086 0.594±0.091 0.964±0.010 0.619±0.083 0.981±0.008 0.598±0.151

FreeCOS [10] 0.439±0.099 0.603±0.102 0.963±0.017 0.637±0.151 0.978±0.017 0.606±0.138

Our 0.578±0.102 0.727±0.087 0.974±0.012 0.772±0.077 0.983±0.010 0.698±0.121

II-XA
Unet [9] 0.689±0.044 0.815±0.031 0.982±0.005 0.788±0.062 0.993±0.003 0.851±0.048

FreeCOS [10] 0.513±0.056 0.676±0.049 0.967±0.008 0.694±0.070 0.981±0.009 0.672±0.091

Our 0.669±0.071 0.800±0.054 0.980±0.006 0.812±0.052 0.989±0.005 0.795±0.083

Table 2. Ablation study results on the I-XA dataset.

XA Lcon Lcfa Lccc Lpa Jac. Dice Acc. Sen. Spe. Pre.

- - - - - 0.536±0.143 0.685±0.137 0.973±0.014 0.687±0.148 0.986±0.008 0.697±0.143

✓ - - - - 0.552±0.124 0.703±0.112 0.973±0.013 0.729±0.112 0.984±0.009 0.689±0.129

✓ ✓ - - - 0.553±0.107 0.706±0.094 0.974±0.012 0.702±0.091 0.987±0.009 0.723±0.129

✓ ✓ ✓ - - 0.561±0.106 0.712±0.093 0.974±0.013 0.728±0.085 0.985±0.010 0.711±0.131

✓ ✓ ✓ ✓ - 0.568±0.104 0.718±0.091 0.974±0.013 0.752±0.078 0.984±0.011 0.700±0.128

✓ ✓ ✓ ✓ ✓ 0.578±0.102 0.727±0.087 0.974±0.012 0.772±0.077 0.983±0.010 0.698±0.121

3.3 Ablation Study of Adaptive Representation Alignment

We conduct the ablation study to evaluate the impact on segmentation quality
when training with real XA and different loss functions. The results are shown
in Table 2. Here, we set the Unet trained by our simulated XA images as the
baseline, and its results are shown in the 1st row in Table 2. Notably, our baseline
outperforms self-supervised methods, suggesting that our proposed XA simula-
tion module facilitates deep learning-based vessel segmentation without manual
annotations. Meanwhile, we observe that simply forwarding the model on target
XA images still yields improvements in segmentation performance on the target
XA domain. Subsequent rows in Table 2 demonstrate the incremental impact of
incorporating different components, represented by various loss functions. Our
findings highlight the significant contribution of our method in enhancing vessel
segmentation quality, indicating its efficacy in aligning representations between
simulated and real XA domains. These results underscore the importance of
adaptive representation alignment techniques in improving the generalization of
deep learning models across different data distributions.
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4 Conclusion

In this paper, we introduce XA-Sim2Real, a novel adaptive representation learn-
ing framework tailored for vessel segmentation in XA images. By addressing the
challenges posed by limited annotations and data heterogeneity across institu-
tions, our method achieves promising segmentation performance without requir-
ing manual annotations. Leveraging DRVR generation and adaptive represen-
tation alignment techniques, XA-Sim2Real effectively bridges the gap between
simulated and real XA data, ensuring robust and accurate segmentation results.
Extensive experimental evaluations on public and in-house datasets demonstrate
the superiority of our approach over state-of-the-art self-supervised methods,
reaffirming its applicability and effectiveness in clinical settings.
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