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Abstract. Optical coherence tomography (OCT) image analysis plays
an important role in the field of ophthalmology. Current successful analy-
sis models rely on available large datasets, which can be challenging to be
obtained for certain tasks. The use of deep generative models to create re-
alistic data emerges as a promising approach. However, due to limitations
in hardware resources, it is still difficulty to synthesize high-resolution
OCT volumes. In this paper, we introduce a cascaded amortized la-
tent diffusion model (CA-LDM) that can synthesis high-resolution OCT
volumes in a memory-efficient way. First, we propose non-holistic au-
toencoders to efficiently build a bidirectional mapping between high-
resolution volume space and low-resolution latent space. In tandem with
autoencoders, we propose cascaded diffusion processes to synthesize high-
resolution OCT volumes with a global-to-local refinement process, amor-
tizing the memory and computational demands. Experiments on a public
high-resolution OCT dataset show that our synthetic data have realistic
high-resolution and global features, surpassing the capabilities of existing
methods. Moreover, performance gains on two down-stream fine-grained
segmentation tasks demonstrate the benefit of the proposed method in
training deep learning models for medical imaging tasks. The code is
public available at: https://github.com/nicetomeetu21/CA-LDM.

Keywords: Medical Image Synthesis · Diffusion Probabilistic Model ·
High-resolution Volumetric Images · Memory-efficient Synthesis Frame-
work.

1 Introduction

Optical coherence tomography (OCT) has been widely used to visualize and
exam the intricate retinal structure, with the advantages of non-invasive and
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high-resolution 3D volumetric imaging. By analyzing fine-grained pathological
markers and anatomical changes within OCT volumes, numerous models has
been developed to diagnose a variety of ocular and systemic diseases. For accu-
rate and robust analysis, the development of these models requires the collec-
tion of sufficient OCT data under specific conditions. However, gathering such
medical data frequently encounters many challenges, including the limitation of
distribution of subjects, privacy concerns and reliance on expert knowledge.

Recent advancements in generative models, such as generative adversarial
networks (GAN) [3] and Diffusion models [9], show promising results in synthe-
sizing high-quality images [16, 18] and videos [1, 2, 5]. These prompt researchers
to explore the possibility of synthesizing medical images to address data-related
challenges. However, prior works mainly focus on 2D images [6, 23, 21, 11, 15]
or low-resolution 3D volumes. For instance, Khader et al. [12] introduced a
lightweight 3D latent diffusion model for the unsupervised synthesis of medi-
cal volumes, whereas Sun et al. [20] developed a GAN-based hierarchical amor-
tized framework. Deo et al. [4] employed conditional latent diffusion models with
shape and anatomical guidance to synthesize 3D brain vasculatures. Hu et al.
[10] explored transferring medical volumes to unseen domains by utlizing 2D
variational autoencoders. Kim et al. [13] proposed a diffusion-based deformable
model to estimate intermediate temporal volumes between source and target
volumes. Despite the high fidelity can be achieved, these methods are limited to
synthesizing volumes of up to 2563 in size, due to the substantial memory re-
quirements for the training and inference phases. Since OCT volumes typically
have higher resolutions, previous techniques could only produce down-sampled
or cropped versions of OCT volumes, which lack critical fine-grained or long-term
information. A recent study [7] proposes a sequence-based generation framework
to generate high-resolution volumes slice-by-slice with available voxel-wise struc-
tural labels, which are expensive for OCT volumes. Therefore, there is a need
for innovative methods to synthesize high-resolution OCT volumes, especially
considering the limited memory capacity.

We introduce cascaded amortized latent diffusion models (CA-LDM) to syn-
thesize high-resolution OCT volumes in a memory-efficient way. The core idea
is to amortize the memory and computational demands of synthesizing whole
OCT volumes to different diffusion processes in latent spaces. We first build
a mapping between the low-resolution latent space and the high-resolution vol-
ume space with a group of autoencoder networks, so that the diffusion generation
process can be taken in the low-resolution latent space. To address memory con-
straints, we introduce non-holistic autoencoders (NHAE). Unlike conventional
autoencoders which encode and reconstruct the entire volume, NHAE performs
volume super-resolution that involves encoding thumbnail volumes and then de-
coding them slice-by-slice into high-resolution volumes. In tandem with NHAE,
cascaded diffusion processes are employed to synthesize high-quality OCT vol-
umes. First, a 3D global diffusion process synthesizes 3D latent representations.
Then, a 2D slice diffusion process refines the latent representations by inject-
ing finer high-resolution details during the slice-wise sequential decoding. This
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design amortizes the requirements for depicting global and detailed features by
different diffusion processes, thus the memory and computational demands are
also amortized. The proposed model could synthesize OCT volumes with the
resolution of 5123, matching the inherent resolution of OCT volumes of many
commercial devices.

The main contributions of our work are as follows: 1) Our proposed method
is the first to synthesize 3D OCT volumetric images at a resolution of 5123,
surpassing previously achieved resolutions. 2) We introduce non-holistic autoen-
coders for efficiently compressing and decompressing the high-resolution volumes
into low-resolution representations. 3) We introduce cascaded diffusion processes
for coarse-to-finely synthesizing high-quality volumetric images within the con-
straints of limited memory capacity. 4) Experimental results demonstrate the
high quality of the generated volumetric images and the superiority compared
existing methods. Besides, the results of two down-stream tasks highlight their
potential benefits and applications.

2 Methodology

2.1 Non-holistic Autoencoders

Fig. 1(a) shows the overview of the proposed method. To synthesis 3D volumes,
several previous works [12, 4] migrate latent diffusion model (LDM) [16] to 3D
versions. However, when the resolution of data becomes high, training the fully
3D autoencoders to encode and decode the entire volume is uneconomical. In-
stead, NHAE performs volume super-resolution with thumbnail image encoding,
latent uniaxial super-resolution and a slice-wise sequential image decoding pro-
cesses.

Thumbnail image encoding: We regard x as the volumetric image of size
(D,H,W ), where D corresponds to the length of the inter-slice dimension and
H,W represent the height and width within the slices. In the encoding process,
we first down-sample x to a lower resolution thumbnail image. Then a fully 3D
encoder takes the thumbnail image as input and outputs a latent representation
z of size (c,D′, H ′,W ′), where c represent the number of channels.

Latent uniaxial super-resolution: We employ a uniaxial super-resolution
module fsr, consisting of multiple 3D residual and uniaxial upsample blocks, to
up-sample the latent representation: zsr = fsr(z). The up-sampled representa-
tion zsr has the size (c,D,H ′,W ′) where the up-sampling is applied solely to
the inter-slice dimension D.

Slice-wise image decoding: We treat zsr as a sequence of the 2D latent slices
of size (c,H ′,W ′) and employ a multi-slice decoder that takes k consecutive
latent slices as input and outputs a center high-resolution image slice of size
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Fig. 1: (a) Overview of the proposed method. The size of images and latent rep-
resentations are noted. (b) Architecture of the multi-slice decoder. It consists of
2D residual blocks with 3D adaptors of different scales. (c) Detailed architec-
ture of the residual block and the 3D adaptor. k, c, h, w represent the batch size,
channels, height and width of a batch of 2D features. α is a learnable mixing
factor.

(H,W ). With a sequential decoding process, we can reconstruct the 3D volu-
metric image from zsr as follows:

xrec = [xi]
D
i=1, xi = DecM ([zsrj ]

i+ k
2

j=i− k
2

) (1)

where xi represents the i-th image slice of the reconstructed 3D volume xrec, zsri
represents the up-sampled 2D latent slice, and DecM symbolizes the multi-slice
decoder.

Efficient multi-slice decoder: Inspired by recent models [21,22] leveraging
pretrained 2D networks to help model 3D data, we employ a 2D and 3D hy-
brid convolutional network as the multi-slice decoder to efficiently process the
anisotropic 3D patches (k ≪ H ′,W ′). Fig. 1(b)(c) illustrate the architecture of
DecM . Specifically, we first train a 2D decoder that incorporates residual and
up-sample blocks, to transform a single latent slice into its corresponding image
slice. Then, we fix the trained parameters of the 2D networks and add learnable
3D convolutional adaptors after each residual block. When processing a batch
of consecutive latent slices, the 2D layers operate on each slice independently,
while the 3D adaptors reinterpret the batch dimension as a spatial dimension,
executing 3D convolutions.
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Both encoding and decoding of NHAE avoid direct process the entire high-
resolution volume, reducing the memory requirement of the training and infer-
ence of networks with large parameters. For training, we randomly reconstruct
one 2D slice image of each volumetric sample and calculate the same hybrid loss
as LDM [16].

2.2 Cascaded Diffusion Processes

Since NHAE bidirectional map between the volume space and the latent space,
a global diffusion network Diff3D synthesizes 3D latent representations from
standard Gaussian noises ϵ by T -steps denoising [9], formulated as zsyn =
Diff3D(ϵ, T ). Subsequently, we decode volumes from synthesized latent rep-
resentations. Despite the high content consistency achieved by the synthetic vol-
umes, some high-resolution details may be lost due to the high compression rate.
To solve this problem, we introduce a slice diffusion refiner Diffslice to improve
high-resolution details during the slice-wise decoding. Specifically, we further
train an auxiliary 2D encoder alongside the fixed decoder. This encoder trans-
forms high-resolution image slices xi into 2D latent slices zhri of size (c,H ′,W ′).
Compared to the 3D latent representation encoded from a down-sampled vol-
ume, zhri has more complete high-resolution information. The slice diffusion re-
finer learns to generate zhri guided by zsri : (zhrsyn)i = Diffslice(fsr(zsyn)i, ϵ, T ).
Then OCT volumes are decoded from the refined latent representations by Eq. 1.

The global diffusion model is tasked with ensuring global consistency, whereas
the slice diffusion refiner concentrates on enhancing high-resolution details, lever-
aging the accurate global context provided. This strategy not only optimizes
resource use but also improves the quality of the synthesized high-resolution
volumes.

3 Experiments and Results

Dataset: We conduct generation and downstream segmentation experiments
on a public dataset OCTA-500 [14], which includes 300 high-resolution Optical
Coherence Tomography (OCT) volumes of retinal macular area. As preprocess,
we resize each OCT volumetric image from 400×640×400 to 512×512×512(D×
H ×W ). We randomly and category-individually split 2/3 data (203 volumes)
for training and 1/3 data (97 volumes) for testing.

Implementation details: In our experiments, we set T = 1000, the image
size D,H,W = 512, the latent size D′, H ′,W ′ = 64, c = 4 and k = 5. All
experiments are implemented on 24G NVIDIA 4090 GPUs. To train CA-LDM,
we first train NHAE, and then train two diffusion models. When inference by
diffusion models, we employ the accelerate trick as the DDIM [19] that reduces
the iterations to T/5. The synthesis speed is about 10 minutes per volumetric
image. For label-guided synthesis of downstream segmentation tasks, we fine-
tune diffusion models by adding condition encoders [16]. The encoded labels
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Fig. 2: Visual comparison of synthetic OCT. Each sample provides a mean pro-
jection of the whole volume and 2D images of intra-slice and inter-slice directions
in the middle of the volume.

are concatenated with the noisy latent representations as the input of diffusion
networks.

Metrics: Fréchet inception distance (FID) [8] and total variation (TV) [17]
metrics are widely used to assess 2D image quality. A lower FID score indicates
higher perceptual image quality. A lower TV score indicates cleaner and bet-
ter visual quality. To evaluate the quality of the synthesized 3D volumes, we
calculate TV of whole volumetric images, FID of all 2D images in intra-slice
directions (Intra-FID), and FID of all 2D images in inter-slice directions (Inter-
FID). For the downstream layer segmentation task, we calculate Dice and mean
absolute distance (MAD) metrics [22]. For the downstream artery–vein segmen-
tation task, we calculate Intersection over Union metrics of arteries (IoU-A) and
veins (IoU-V) [14].
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Table 1: Quantitative evaluation of compared and ablation methods
Model Intra-FID ↓ Inter-FID ↓ TV ↓

LDM3D [16] 97.62 127.51 712.2 ± 14.0
Medical Diffusion [12] 48.90 54.60 639.9 ± 4.2
LVD [1] 21.78 54.57 654.9 ± 31.2

NHAE+Diff3D 39.06 52.09 609.4 ± 31.2
NHAE+Diff3D+Diffslice 17.69 30.62 603.7 ± 13.2
NHAE+Diff3D+Diffslice+DecM (CA-LDM) 17.10 28.31 575.3 ± 7.5

Comparison experiments: We compared the proposed CA-LDM with three
3D data synthesis models. These include a 3D version of LDM [16] (LDM3D)
which employs 2D autoencoders coupled with a 3D diffusion model, Medical
Diffusion [12], latent video diffusion (LVD) [1]. The parameters of these models
are adjusted to enable successful training and inference on 24G GPUs. Fig. 2
shows synthetic samples of different methods. The results of LDM3D exhibit in-
correct structures and a notable lack of detail. Meanwhile, the results of Medical
Diffusion [12] lack high-resolution details and present noisy backgrounds. The
results of LVD [1] suffer from inconsistencies in global content, as evidenced by
unauthentic vascular structures and brightness variations. In contrast, the re-
sults of CA-LDM have better high-resolution details and more consistent global
content, making them the most similar to real OCT images. Table 1 shows the
quantitative performance of each model. Our model demonstrates better Intra-
FID, Inter-FID and TV scores. Both qualitative and quantitative assessments
demonstrate that our proposed model delivers the highest quality of synthetic
imagery, capable of producing authentic high-resolution volumetric images. To
demonstrate the efficient of CA-LDM in terms of memory usage, we monitor
the peak memory usage of each model when synthesizing different resolution’s
volumes. As shown in Fig. 3a, CA-LDM has the lowest peak memory usage
for each resolution’s synthesis and the slowest growth rate when the resolution
increasing.

Ablation study: We perform ablation studies to evaluate the effectiveness
of each proposed component, as shown in Table 1. Compared to the models
with 2D autoencoders (LDM3D) and 3D autoencoders (Medical Diffusion), the
model employing NHAE (NHAE+Diff3D) has the lower Intra-FID, Inter-FID
and TV scores. Each addition of Diffslice and DecM leads to decreasing of all
three scores. Besides, we show the synthetic volumes of each ablation model
in Fig. 3b. It can be seen that incorporation of Diffslice improves the high-
resolution details, but results still show inconsistency between slices, manifesting
as the bright and dark strip patterns. Incorporation of DecM mitigated the
irregular patterns, resulting in a smoother synthetic volume.
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Fig. 3: (a) Peak memory usage during inference time with respect to the res-
olution of the synthesized volume for each model. These models are standard
versions without parameter adjustments. (b) Projections of the ablation meth-
ods. Each group of samples is corresponding the same latent representations
synthesized by Diff3D.

Benefits for downstream tasks: We utilize CA-LDM to synthesize images
guided by real labels for two 3D fine-grained segmentation tasks. One task is the
artery–vein segmentation. We train the IPNv2 [14] model to segment the retinal
artery and vein vessels. Another is the layer segmentation. We train a modified
3D U-Net model [22] to segment six retinal layer surfaces. The results are shown
in Table 2. The first three rows in Table 2 shows that as the resolution decreases,
the performance of the models also decrease, which demonstrates the importance
of high-resolution data for OCT image analysis. Compared to the models of the
"Real" group, models of the "200% Syn" group have a higher IoU-V and a lower
MAD scores, which demonstrates the potential of synthetic data to replace the
real data. Besides, models of the "Real+100% Syn" group have better metrics of
both tasks than model of "Real" group. And the inclusion of an additional 100%
synthetic data (Real+200% Syn) leads to further improvements in performance
for both tasks. These demonstrate the synthetic data can supplement real data to
benefit downstream tasks. The qualitative results and synthetic data are shown
in Appendix.

4 Conclusion

This paper presents a cascaded amortized latent diffusion model (CA-LDM) to
synthesize high-resolution medical volumetric images. Addressing the challenges
posed by restricted memory resources, we propose non-holistic autoencoders and
cascaded diffusion processes. The experiments demonstrate that our proposed
method outperform state-of-the-art methods and is helpful for downstream seg-
mentation tasks. Future efforts will focus on minimizing the time consumption
of the model and achieving more flexible control over the synthesis process.
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Table 2: Segmentation performance of two tasks using real data (Real), real data
with a downsampled resolutions of 1283 and 2563 (Real-128,Real-256), twice the
amount of synthetic data (200% Syn), real and an equivalent amount of synthetic
data (Real+100% Syn), real and twice the amount of synthetic data (Real+200%
Syn).

Training data
Artery–vein Seg Layer Seg

IoU-A ↑ IoU-V ↑ Dice ↑ MAD ↓

Real-128 0.427 ± 0.048 0.425 ± 0.064 0.884 ± 0.057 1.647 ± 1.492
Real-256 0.589 ± 0.054 0.585 ± 0.585 0.918 ± 0.071 1.216 ± 2.167
Real 0.681 ± 0.058 0.677 ± 0.091 0.941 ± 0.075 1.030 ± 2.032
200% Syn 0.679 ± 0.059 0.679 ± 0.091 0.941 ± 0.075 0.976 ± 1.723
Real+100% Syn 0.681 ± 0.059 0.679 ± 0.090 0.943 ± 0.075 0.931 ± 1.882
Real+200% Syn 0.683 ± 0.063 0.680 ± 0.099 0.944 ± 0.071 0.930 ± 1.894
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