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Abstract. Deformable image registration is fundamental to many med-
ical imaging applications. Registration is an inherently ambiguous task
often admitting many viable solutions. While neural network-based reg-
istration techniques enable fast and accurate registration, the majority of
existing approaches are not able to estimate uncertainty. Here, we present
PULPo, a method for probabilistic deformable registration capable of un-
certainty quantification. PULPo probabilistically models the distribution
of deformation fields on different hierarchical levels combining them us-
ing Laplacian pyramids. This allows our method to model global as well
as local aspects of the deformation field. We evaluate our method on two
widely used neuroimaging datasets and find that it achieves high regis-
tration performance as well as substantially better calibrated uncertainty
quantification compared to the current state-of-the-art1.

1 Introduction

Deformable registration aims to establish a non-linear mapping between pairs of
unaligned images. It is a key component in numerous clinical tasks, including the
alignment of pre- and postoperative scans, as well as the monitoring of disease
progression over time. Traditionally, registration methods addressed this problem
through optimization, whereby an energy function is minimised for each image
pair [26]. In order to improve registration performance, the displacement field
was often optimized on several hierarchically organised resolution levels allowing
to capture global as well as local effects [17]. Substantial research was dedicated
to diffeomorphic registration which ensures invertability and smoothness of the
deformation fields [1,6].

While traditional methods are still widely used, they are very time con-
suming, often requiring many minutes or hours to align a 3D image pair. Re-
cently, neural networks have emerged as a powerful alternative to traditional
approaches. They allow for exceptionally fast deformation prediction with high
accuracy [4,21]. Expanding upon the concept of hierarchies in traditional reg-
istration methods, a number of works introduced neural network-based diffeo-
morphic registration approaches which progressively estimate and combine the
1 The code is available at https://github.com/leonardsiegert/PULPo.

https://github.com/leonardsiegert/PULPo
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deformation fields at different resolution levels [22,20]. These approaches have
been shown to lead to performance improvements over non-hierarchical methods.

Fig. 1. Overview: (Left) Our probabilistic unsupervised Laplacian pyramid registra-
tion approach (PULPo) hierarchically models the deformation field at different resolu-
tions allowing for accurate registration and well-calibrated uncertainty quantification
particularly in the presence of lesions. (Right) Graphical model for our method.

An important but neglected area in registration is uncertainty quantification.
The majority of existing approaches only output the most likely deformation.
However, there may exist many viable alternative deformations that also lead
to a good alignment [18]. The resulting aleatoric uncertainty in the deforma-
tion field is of high clinical significance for many applications such as disease
monitoring or neurosurgery [25]. This problem is exacerbated when images con-
tain unmatchable areas such as a preoperative scan containing a tumor and a
follow-up scan where the tumor has been resected.

Early work on uncertainty quantification in traditional registration used
probabilistic techniques to model the posterior of the deformation field given
the input images, and used Markov-Chain Monte Carlo sampling to draw sam-
ples from this distribution [25,24,23,12].

Uncertainty quantification in neural network-based approaches is currently
understudied. Xu et al. [30] apply the popular Monte Carlo (MC) dropout ap-
proximation to get an estimate of epistemic uncertainty resulting from uncer-
tainty in the model parameters. Recently, Chen et al. [8] applied the same tech-
nique to a transformer-based registration architecture. Dalca et al. [9,10] pro-
posed the probabilistic VoxelMorph which is an extention of their previously
proposed approach [4] by a variational inference of the deformation velocity field
using a procedure inspired by conditional VAEs (cVAEs) [28]. Smolders et al. [27]
extended this approach for use in adaptive proton therapy. Since VoxelMorph
uses a latent space matches the resolution of the input images, it may predis-
pose the model to capture the distribution of local deformations at the expense
of capturing the distribution of global deformations. Conversely, Krebs et al. [15]
proposed a related method based on cVAEs, in which the latent space is in a
low-resolution bottleneck of the architecture. While this approach allows to cap-
ture the distribution of local deformations, it may be restricted in capturing the
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distribution of local deformations. We note that Krebs et al. did not explore the
uncertainty estimation aspect in their work.

Here, we propose a novel probabilistic unsupervised registration technique
that can capture local as well as global deformations and their variability. The
method uses a hierarchical variational inference approach to probabilistically
model the deformation field at increasingly fine resolution levels. For each level
we estimate stationary velocity fields (SVFs) [1], which we then integrate to ob-
tain diffeomorphic deformations. The deformation fields from the different resolu-
tion levels are then combined by leveraging the principle of Laplacian pyramids.

Of the the neural network-based registration approaches capable of uncer-
tainty estimation the probabilistic VoxelMorph [9,10] is arguably the most widely
used due to its strong registration performance and the availability of easy-to-
use, well-documented code. However, Grzech et al. [12] observed that the proba-
bilistic VoxelMorph produces uncertainty estimates with very small magnitudes,
putting their utility into question. We confirm these findings in our own experi-
ments in Sec. 3, and demonstrate that our probabilistic unsupervised Laplacian
pyramid registration (PULPo) approach substantially outperforms the probabilis-
tic VoxelMorph approach in terms of uncertainty quantification on the OASIS-1
and BraTS-reg datasets, while still producing well-aligned registrations.

2 Method

We model pairwise registration as a probabilistic generative process in which
the fixed image f is generated by transforming the moving image m with the
deformation field ϕ(z) that depends directly on a set of latent variables z =
{zl|l ∈ {0, . . . , L − 1}} as shown in Fig. 1. The latent variables zl are arranged
hierarchically, with the resolution of each level l being half that of the level above
(l−1). This allows them to capture local as well as global effects in the resulting
deformation field.

Following prior work [10,15], we define the likelihood of f as

p(f |z,m) = N (f ;m ◦ ϕ(z), σ2
l I) , (1)

where ◦ is the transformation of the moving image m with the deformation field
ϕ, and σ2

I denotes additive image noise. Our goal is to approximate the posterior
distribution p(z|f ,m). As Maximum A Posteriori (MAP) estimation of the true
posterior p(z|m, f) is intractable, we use a variational approximation q of the
true posterior distribution, optimizing a lower bound to the true posterior [14].

We define the prior p(z) and variational posterior q(z|m, f) of our generative
model as products of Gaussians with diagonal covariance matrices

p(z) =
L−1∏
l=0

p(zl) =
L−1∏
l=0

N (zl;0, I)

q(z|m, f) =
L−2∏
l=0

q(zl|zl+1,m, f) =
L−2∏
l=0

N (zl;µzl|zl+1,m,f , Σzl|zl+1,m,f ) ,

(2)
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with q(zL−1|m, f) = N (zL−1;µzL−1|m,f , ΣzL−1|m,f ).
To optimize the variational lower bound, we minimize the KL-divergence

between the approximate posterior q(z|m, f) and the true posterior p(z|m, f)
leading to the following evidence lower bound (ELBO):

minKL[p(z|m, f)||p(z|m, f)] = minEq[log q(z|m, f)− log p(z|m, f)]

= min
L−1∑
l=0

KL[q(zl|zl+1,m, f)|p(zl)]−Eq[log p(f |z,m)] .
(3)

A detailed derivation can be found in the supplemental materials.
We represent the deformation field using the SVF model [1] where we first

estimate a velocity field vl for each level, and then integrate it with scaling and
squaring in 7 steps to yield an approximately diffeomorphic deformation field ϕl.

2.1 Neural network implementation

We use neural networks to approximate q(z|m, f) and the non-linear transfor-
mation ϕ(z). Following related work on hierarchical conditional VAEs [5,11] the
model is organized in K total levels and L <= K latent levels. A schematic of
the architecture is shown in Fig. 2. We used K = 5 and L = 4 for all experiments.
The encoder predicts the parameters µzl

and σzl
of each zl based on the moving

(m) and fixed (f) input images. A sampling layer samples zl according to the
predicted distribution. Those samples are then transformed into velocity fields
vl for each level. The velocity fields processed by a vector integration layer to
obtain deformation fields ϕl for each level, which are then transformed to the
moved image fl using a spatial transformer layer. The outputs ϕ0 and f0 are the
final deformation field and moved image and have the same resolution as the
input images. The outputs fl of the lower levels are used for deep supervision.
Each level also informs the level above with a feedback connection containing a
concatenation of zl, vl, ϕl and f̂l.

Rather than independently estimating the velocity field vl for each resolu-
tion level, the velocity fields are incrementally added to the previously estimated
velocity fields of the lower levels. This emulates the mechanics of a Laplacian
pyramid [7], and allows a gradual refinement of the final deformation akin to tra-
ditional hierarchical registration approaches. The vector integration on each level
ensures that the resulting deformation fields are approximately diffeomorphic.

2.2 Training

Since the loss terms in Eq. 3 contain a sum over all voxels, higher levels are
weighted higher in the resulting loss function since they contain more voxels. To
account for this difference, we scale the losses on each level with wl = 23l.

We substitute the MSE loss resulting from the log-likelihood term in Eq. 1
with the normalized cross-correlation (NCC) [2]) with window size kl = 1+2(L−
l) and a balancing factor γ = 0.05. In preliminary experiments we observed a
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Fig. 2. Architecture: Schematic network architecture with 3 latent levels. In practice,
we used 4 latent levels.

substantially better performance with the NCC-loss and used it for all experi-
ments. We also use an auxiliary deep similarity loss to incentivize the method
to use the lower levels. For this, we downscale the moving image m to the same
resolution as the samples zl and deformation fields ϕ(zl), and computed the
NCC-loss with the level predictions f̂l = ml ◦ ϕ(zl). Lastly, to ensure smooth
deformation fields, we use a diffusion regularizer on the spatial gradients of the
deformation field ϕl on each level. The total training objective for our model can
be written as

L = β

L−1∑
l=0

wlKL[q(zl|zl+1,m, f)|p(zl)] −
γ

σ2
I

L−1∑
l=0

wlNCC(ml, fl, kl)

+ λ
L−1∑
l=0

wl

Vl∑
v

||∇ϕv||2 .

(4)

We used β = 0.1 and λ = 0.025 for our experiments. We set σ2
I = 0.25 on the

highest level and σ2
I = 1 on all others.

2.3 Inference

After training, stochastic samples of the deformation field ϕ can be obtained
with repeated forward passes through our model. This allows us to calculate the
variation of the deformation field var(ϕ(z)). Transforming the moving image m
with the samples further allows us to obtain an uncertainty estimate on a voxel
level, i.e. var(m ◦ ϕ(z)).

While the prediction could be obtained by averaging multiple samples, we
propose an accelerated strategy: We perform a single forward pass, but instead of
sampling zl, we directly propagate the predicted mean µzl

. Since the variational
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posterior q is Gaussian when fixing the conditions, this procedure can be shown
to approximate the MAP of the true posterior.

3 Experiments & Results

We performed experiments on two 3D brain datasets and evaluated registration
as well as uncertainty quantification performance.

3.1 Data

OASIS-1 We used the OASIS-1 3D brain MRI dataset [13,19], containing both
subjects with Alzheimer’s disease and healthy controls, aged 18 to 96. We sepa-
rated the subjects into a 354/30/30 train/validation/test split. The images were
skull-stripped, bias-corrected and affinely registered. The resolution was isotropic
1mm resulting in volume sizes of 160 x 224 x 192. The dataset also contains seg-
mentation maps with 35 anatomical labels, which we used to calculate the DSC
metric. We used the anatomical landmarks from Taha et al. [29]. We used only
one scan per subject and employed a pairwise inter-subject training scheme.

BraTS-Reg We also used the BraTS-Reg 2022 dataset [3], consisting of pre-
operative and follow-up brain MRI scans of the same patient diagnosed with
glioma. We used only the contrast-enhanced T1-weighted (T1CE) MR images, as
Meng et al. [20] found T1CE-sequences to yield better performance than T1, T2,
FLAIR, and multi-channel inputs. The data was split into training/validation/test
following a 120/20/20 ratio. Landmarks in baseline and follow-up scans were
manually annotated by clinical experts. After preprocessing, the volumes had
an isotropic voxel size of 1mm and dimensions 144×192×160. We used a pair-
wise intra-subject training scheme, aligning the follow-up to the pre-operative
scan.

3.2 Metrics

We evaluated alignment in terms of the image intensity-based Root Mean Squared
Error (RMSE) and the Target Registration Error (TRE) of the anatomical land-
marks. For OASIS, we also evaluated the soft Dice Similarity Coefficient (DSC) of
the anatomical segmentation maps. We further evaluated the percentage of nega-
tive voxels of the Jacobian determinant (JD) of the deformation fields %|Jϕ| ≤ 0
as a measure of smoothness and invertibility.

To evaluate the uncertainty estimation, we computed the NCC between the
variance of the output and mean squared error over N = 20 samples [11,5].
This provides a measure for the calibration, i.e. how well the method allocates
uncertainty where it makes mistakes [16]. We report the NCC for the output
image intensities (NCCV X) and the anatomical landmarks (NCCLM ).
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3.3 Experiments

We trained our proposed PULPo method as described in Sec. 2.2.
We used the probabilistic diffeomorphic version of VoxelMorph (DIF-VM) [10]

as baseline method. Building on the authors’ publicly available code, we imple-
mented the probabilistic extension as described by Dalca et al. [10]. We used the
same hyperparameters that Dalca et al. used in their experiments. We trained
DIF-VM using our NCC loss instead of the MSE as orginally proposed, since
we found in preliminary results that the NCC version was superior across all
metrics.

In order to better understand the effect of the probabilistic hierarchical struc-
ture of our method, we performed a non-hierarchical ablation of our method,
PULPoNH . While the base architecture was the same as that of the full PULPo,
probabilistic sampling was only enabled on the highest level (l = 0), and lower
levels didn’t contribute to the final deformation field. The losses on all other
levels were set to zero, and µzl

was propagated deterministically directly instead
of sampling a zl.

3.4 Evaluation of Registration Performance

Table 1. Results: Registration performance and uncertainty quantification metrics
for all methods.

Dataset Method RMSE DSC %|Jϕ|≤0 TRE NCCV X NCCLM

OASIS-1
DIF-VM 0.039 0.804 0.002 2.943 0.210 ± 0.015 -0.171 ± 0.201
PULPoNH 0.036 0.770 0.084 3.202 0.510 ± 0.051 0.092 ± 0.247
PULPo 0.036 0.777 0.068 4.097 0.533 ± 0.039 0.302 ± 0.110

BraTS-Reg
DIF-VM 0.044 - < 10−6 2.321 0.264 ± 0.043 -0.016 ± 0.366
PULPoNH 0.055 - < 10−6 3.030 0.474 ± 0.089 0.231 ± 0.352
PULPo 0.044 - 0.001 2.434 0.497 ± 0.073 0.229 ± 0.324

We evaluated the registration performance in terms of the metrics described
in Sec. 3.2. The results in Tab. 1 show that DIF-VM resulted in better align-
ment in terms of DSC and TRE, and smoother DFs in terms of %|Jϕ|≤0, however
PULPo achieved better RMSE. Visual inspection of qualitative results (see Fig.
3) suggested that both methods achieved good alignment with smooth deforma-
tions. Additional qualitative results can be found in the appendix.

The non-hierarchical ablation PULPoNH resulted in better alignment than
PULPo in terms of the TRE, but in worse alignment in terms of the DSC on
OASIS-1. On BraTS-Reg, PULPoNH resulted in significantly worse alignment
than PULPo.

3.5 Evaluation of uncertainty quantification

The uncertainty calibration metrics NCCV X and NCCLM are shown in Tab. 1 on
the right. PULPo showed a substantially better calibration than DIF-VM, both
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Fig. 3. Registration Results: The moving image m, fixed image f , prediction f̂ ,
predicted DF ϕ, voxel variance var(f) and DF variance var(ϕ). Value range of var(f)
for DIF-VM/PULPo: [0,3.98e-6]/[0,0.042]. Value range of var(ϕ) for DIF-VM/PULPo:
[0,3.37e-5]/[0,1.407]. Shown: Coronal slice 76 of T1CE-scan 5 on BraTS-Reg.

in terms of image intensities (NCCV X) and anatomical landmarks (NCCLM )
on both datasets. The negative NCCLM even indicates a negative correlation
between landmark MSE and landmark uncertainty for DIF-VM. PULPo also gen-
erally performed better than the non-hierarchical ablation PULPoNH except on
the BraTS-Reg landmarks, where the two methods performed similarly. This
indicates that the probabilistic hierarchy allowed better calibrated uncertainty
quantification.

We observed that DIF-VM produced samples with very little variance. This
likely explains the poor performance on the uncertainty metrics. Upon closer
inspection, we found that the σz of DIF-VM’s random latent variable converged
to a very small number making the model almost deterministic in behaviour.
Visual inspection of qualitative results in Fig. 3 confirmed that for PULPo the
deformation field and image variance allocated large uncertainty around the
tumor area where large uncertainties are expected. DIF-VM, on the other, hand
produced a uniform DF variance map on which difficult to register areas cannot
be discerned from others.

4 Discussion and Conclusion

Uncertainty quantification in medical image registration is of high importance
for clinical applications such as disease monitoring or neurosurgery. However,
the problem is severely understudied with only one prior work addressing this
problem in the neural network setting. We have introduced a novel method for
fast diffeomorphic 3D registration that can model global and local uncertain-
ties by probabilistically modelling the deformation fields at different resolution
levels, and combining them using a Laplace pyramid approach. We showed that
our method produces accurate registrations as well as calibrated uncertainty
quantification.
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Our experiments revealed a trade-off between accurate uncertainty estima-
tion and high registration performance. While the probabilistic diffeomorphic
voxelmorph (DIF-VM) achieved better registration performance on some met-
rics, its near deterministic behaviour severely limited its performance on un-
certainty quantification. Future work will focus on further improving our archi-
tecture to improve registration performance, while maintaining well-calibrated
uncertainty estimates.
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