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Abstract. Development of artificial intelligence (AI) techniques in med-
ical imaging requires access to large-scale and diverse datasets for train-
ing and evaluation. In dermatology, obtaining such datasets remains chal-
lenging due to significant variations in patient populations, illumination
conditions, and acquisition system characteristics. In this work, we pro-
pose S-SYNTH, the first knowledge-based, adaptable open-source skin
simulation framework to rapidly generate synthetic skin, 3D models and
digitally rendered images, using an anatomically inspired multi-layer,
multi-component skin and growing lesion model. The skin model allows
for controlled variation in skin appearance, such as skin color, presence
of hair, lesion shape, and blood fraction among other parameters. We
use this framework to study the effect of possible variations on the de-
velopment and evaluation of AI models for skin lesion segmentation, and
show that results obtained using synthetic data follow similar compar-
ative trends as real dermatologic images, while mitigating biases and
limitations from existing datasets including small dataset size, lack of
diversity, and under-representation.
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1 Introduction

Robust and generalizable artificial intelligence (AI) for medical applications re-
quires large datasets representative of intended populations and their subgroups,
relying on a time-consuming and laborious annotation process by clinical ex-
perts (e.g., labeling pixel-level segmentation masks or identifying findings). In
this work, we explore the potential of a skin simulation model and the practical
utility of resulting synthetic images in development and evaluation of AI-based
techniques.

Segmenting and labeling dermatologic images is time-consuming and chal-
lenging, and thus public dermatologic datasets generally contain few examples
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and may not equitably represent intended patient populations [11,17]. For in-
stance, the majority of the publicly available dermatologic images are associ-
ated with lighter skin populations, and dark skin tones are typically under-
represented [23]. This class imbalance has shown to negatively affect darker skin
tones in skin lesion segmentation tasks [8]. Such challenges may introduce biases
in training and evaluation of medical AI devices for dermatologic applications.
Moreover, real skin datasets are prone to inaccurate annotations [3], such as
labeling errors, near duplicates, and incorrect labels, as well as confounders [36],
such as rulers, dark borders, dense hairs and air pockets, which may negatively
affect AI-based diagnostic tools and any data-driven methods ([29,30]) used to
generate synthetic data.

To address these limitations, we propose to simulate dermatologic images
with a knowledge-based approach [5], where properties of skin and lesions, deter-
mined via detailed physics models, along with rendering conditions are systemat-
ically varied. We created S-SYNTH, an open-source skin simulation framework
for generating synthetic dermatologic images, and show that subgroup analy-
sis using S-SYNTH images closely mimics comparative performance trends in
real-patient skin datasets, while mitigating effects of mislabeled examples and
limitations of a limited patient evaluation dataset. Although the known con-
founders [36] were taken into account to generate the images, our model did
not propagate the confounding factors to the synthetic data, unlike data-driven
models ([29,30]). To our knowledge, S-SYNTH is the first to use knowledge-based
approach to produce skin images with and without lesions. Our contributions
can be summarized as follows:

– We describe S-SYNTH, an open-source, flexible framework for creation of
highly-detailed 3D skin models and digitally rendered synthetic images of
diverse human skin tones, with full control of underlying parameters and
the image formation process1.

– We systematically evaluate S-SYNTH synthetic images for training and test-
ing applications. Specifically, we show that S-SYNTH synthetic images im-
prove segmentation performance when only a limited set of real images is
available for training. We also show comparative trends between S-SYNTH
synthetic images and real-patient examples (according to skin color and le-
sion size) are similar.

2 Related Work

A particular challenge in practical development and evaluation of dermatologic
AI is the lack of labeled datasets. Of the few public labeled datasets that exist,
only a fraction have fine grained annotations, such as pixel-level segmentation
levels for lesions [25] or hair [19]. The annotation process is error-prone and can
have large variations across truthers (particularly when datasets are collected
1 Code and supporting data are available at: https://github.com/DIDSR/
ssynth-release

https://github.com/DIDSR/ssynth-release
https://github.com/DIDSR/ssynth-release
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Fig. 1. Overview of (a) a digital skin model generated in Houdini, and an example pro-
jection of 3 different skin lesion volumes at 5 growing time points, (b) digital rendering,
with examples of generated synthetic images and their corresponding lesion masks, and
(c) distribution of skin tone for real-patient images (ISIC) and synthetic images, as well
as application of synthetic images for training and testing of an AI device for a skin
lesion segmentation task.

for different purposes and no consistent labeling protocol is established). In part
due to these annotation difficulties, there is a lack of transparency and potential
bias within the datasets used for dermatologic AI studies. A recent investiga-
tion found that from a total of 70 unique studies that involved AI models for
dermoscopic imaging, only about 7 (10%) included skin tone information for at
least one dataset used [14]. Synthetically generated data has been explored to
address these challenges. Generative models have been used to create synthetic
skin lesions to tackle the class imbalance problem and improve the performance
of the skin lesion classifiers [6,7,16] or enhance lesion segmentation [12,26]. Rezk
et al. have shown that synthetic skin images generated using style transfer and
deep blending improve skin lesion classification accuracy by increasing skin color
diversity [27]. More recently, diffusion models have been used to generate syn-
thetic images to improve skin disease classifier performance [29,30]. Nevertheless,
use of AI to generate synthetic images is limited by the requirement of constant
supervision and adjustment of hyperparameters [6,7], presence of artifacts, such
as skin hair or lighting effects [26], or low prevalence of examples with dark skin
tones within the original training dataset, and a lack of ability to represent all
physical and morphological features of disease [27] and image acquisition systems
(see [25] for more information).

3 S-SYNTH: Skin Simulation Framework

Our approach for generating synthetic skin involves the construction of a 3D
digital object model comprising of skin tissue (epidermis, dermis, hypodermis),
blood network, hair, and a lesion, as shown in Fig. 1a. This process is imple-
mented and automated in Houdini [2], a software for 3D modeling, animation,
and visual effects, via a Python API. Once created, each model is subsequently
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processed through a research-oriented rendering system, Mitsuba 3 [21], to gen-
erate each synthetic rendering (Fig 1b). The approach can be automated to
create large databases with controlled variation for various AI analysis applica-
tions (Fig 1c). In the following sections, we describe the digital skin model and
rendering process.

3.1 Digital Skin Model

Skin Tissue Each skin sample is created from a multi-layer model, with each
layer representing a component of skin tissue. Thicknesses of the topmost two
layers are based on values reported in [35]: epidermis (20-150 µm) and dermis
(1-4 mm). To introduce geometric variability, we incorporated surface roughness
(noise) into the top surfaces of epidermis, hypodermis, and papillary dermis (lo-
cated between the epidermis and dermis). Roughness values were randomized
within predefined constraints, enhancing the naturalistic appearance and diver-
sity of the generated skin models.

Blood Network and Hair The blood network model is created by solving
a shortest path problem on randomly distributed points within a tetrahedral
mesh generated from a primitive cube. Points from the bottom of the cube,
corresponding to the lower blood network capillaries, were designated as start
points, while those from top of the cube, representing the upper capillaries, were
designated as end points. To generate each blood network model, the numbers
and positions of starting and ending points were randomized. Hair models were
constructed by manipulating hair properties (density, length, distribution, thick-
ness, and curvature) in Houdini to generate a diverse range of hair appearances.

Growing Lesion Model We developed a probabilistic, growing lesion model
that generates a 3D volume with stochastic growth of lesion shape and size,
based on [31]. Growth starts with one active cell (i.e., voxel). We define active
cells as those cells that exist and can grow at a given time point. Within each
time point, we iterated over the active cells c and selected them for growth based
on directional probabilities (see Fig. 2). To control the growing direction, the
probability of an active cell to grow outside the skin is set to extremely low, while
the probability for inwards growing is set to be relatively high. Probabilities were
based on a Gaussian distribution G, and are updated in each time point for added
variability.

To control for lesion shape irregularity, we set an irregularity probability
for each cell Cp, which starts Ci number of recursive iterations of the same
growing algorithm on that cell’s location, independent of the regular growth.
These cells can themselves trigger another recursive growth up to a maximum of
Cr recursions. We controlled the generation parameters to create both regular
(Cp = 0.0001) and irregular lesions (Cp = 0.001). Sample images of lesions and
growth evolution can be seen in Fig 1. Additional details can be found in the
Supplementary Material. Once created, the 3D lesion volume is inserted into the
skin tissue model (see [22] for more details).
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Fig. 2. Growing direction probabilities for each cell c in the 3D plane. Note that values
are zeros in the outwards direction, to avoid the lesion growth outside the skin.

3.2 Rendering and Image Formation

Optical Material Properties Melanosomes are the primary contributors to
optical absorption in the epidermis. In the dermis, optical absorption is mainly
attributed to blood, while, in the hypodermis, lipid and fat components are the
predominant sources of optical absorption. Thus, each skin layer is assigned an
optical material, containing the index of refraction (IOR) and the spectral distri-
bution of the absorption and scattering coefficients. Following the methodology
established by Jacques et al. [20], we calculated the optical absorption proper-
ties for each the four distinct tissue types: epidermis, dermis, hypodermis, and
blood. We model reduced scattering of tissue using µ′

s = a(λ/500)−b, where λ is
the light wavelength [9]. Finally, for each skin layer material, we define a surface
scattering model using a bidirectional scattering distribution function (BSDF),
based on [34].

Lighting and Camera To account for lighting variations, we render each skin
model using a collection of High Dynamic Range Imaging (HDRI) images cap-
turing various environmental lighting conditions from [1]. The Volumetric Path
Tracer is a rendering algorithm that simulates the paths taken by light as it
interacts with the 3D scene. It is particularly effective for scenes with volumetric
effects or materials with complex light interactions. Spectral multiple impor-
tance sampling is a technique used to address the spectral nature of light. In
scenes with materials that exhibit variations in spectral properties (e.g., spec-
tral absorption), this method accounts for the complex interactions of light with
materials across different wavelengths, such as those encountered in biological
tissues. A perspective sensor with Mitsuba’s HDR Film is placed 1.5cm above
the skin with a field of view (FOV) of 75 degrees, facing perpendicularly to
the top surface of the epidermis. The Integrator (Mitsuba 3’s plugin for the
rendering technique) is set to Volumetric Path Tracer with spectral multiple
importance sampling. We chose this specific configuration due to its ability to
simulate spectrally-varying optical properties across varying skin tones in simu-
lated lighting conditions. We use 124 samples per pixel (SPP) and render images
at resolution 1024x1024 pixels. Each image and mask take about three minutes
to generate on a GPU. Sample generated images can be seen in Fig. 3.
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Fig. 3. Examples of S-SYNTH images generated with variations of (a) melanosome
fraction, (b) blood fraction, (c) hair artifact, and (d) lesion shape.

3.3 AI Device Description

To demonstrate the usage of S-SYNTH for augmenting real patient data, we
experiment with real and synthetic examples on the task of skin lesion seg-
mentation. which is important for timely treatment decisions [28]. We rely on
DermoSegDiff [10], a state of the art diffusion-based skin segmentation model, to
differentiate lesions from the background region. We used the “dsd_i01” config-
uration, with dim_x=16, dim_g=8, and default training parameters. Images were
segmented at resolution 128×128, and results were evaluated with Dice coeffi-
cient. We trained one model per experiment and reported standard deviation
over test images.

Datasets For real-patient datasets, we used two publicly available skin lesion
segmentation datasets: ISIC18 [13] (ISIC) and HAM10K [32] (HAM). The same
pre-processing and data splits described in [13,4] were applied, where the ISIC
and HAM images were divided into (7200, 1800, 1015) and (1815, 259, 520) for
the baseline model (training, validation, test), respectively. We used the individ-
ual typology angle (ITA) metric [23] to estimate skin tone from the non-lesion
area. Finally, to better match lesion sizes across real and synthetic examples, S-
SYNTH images were cropped to ensure a variety of lesion sizes. With S-SYNTH,
we generated 10,000 images with randomized model properties and lighting, and
subsequently 19,965 testing images with controlled variation: 5,445 with blood
variation, 9,075 with melanosome fraction variation, 3,630 with different lesion
regularity, and 1,815 without hair.

4 Results and Discussion

We present segmentation performance based on three aspects: impact of training
set composition comprising different ratios of real and synthetic images, impact
of various physiological or rendering parameters of the synthetic images when
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Fig. 4. Model performance changes when the training data is composed of (a) different
numbers of the real images, (b) different proportions of real images replaced with
synthetic images (c) different proportions of synthetic images added to real images.

used as test set, and impact of specific characteristics of synthetic images that
are measurable on real images.

Synthetic Data in Training We systematically evaluated the effect of the
training data composition on the real test set performance (similar to the popular
Train-Synthetic-Test-Real (TSTR) protocol [15]) on both ISIC and HAM. As
shown in Fig. 4a, performance improved when more real examples are available
for training. When real images are replaced with synthetic images, the resulting
performance is comparable to that of the baseline model trained on full ISIC (or
HAM) training set (Fig. 4b). However, performance dropped when the training
set was fully composed of synthetic images, presumably due to the domain shift
between the real and synthetic images [18]. More importantly, each model that
was trained on a particular subset of the ISIC (or HAM) and supplemented with
synthetic images resulted in a higher Dice score than the model that was trained
on the same subset of only the real images. Finally, when full training sets were
supplemented with synthetic images (Fig. 4c), performance improved for ISIC,
but saturated for HAM, likely because ISIC was too small to learn all modes of
variation, which synthetic data helped address. We also found that performance
for darker skin tones improved with the addition of synthetic examples (see
Supplementary Material).

Synthetic Data for Testing To check whether synthetic images can produce
meaningful performance trends, we evaluated models trained on real examples
using synthetic test images. Performance dropped for increasing blood fraction
(Fig. 5a), and increasing melanosome fraction (Fig. 5b) of the S-SYNTH images.
Higher melanosome fraction corresponds to darker skin, and the corresponding
performance drop is a known bias in dermatologic AI [27]. Models tested on
lesions with regular shape exhibited higher performance compared to the ones
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tested on irregular lesions (Fig. 5c). Similar to [24], we found that presence of
hair slightly decreased performance (Fig. 5d).

To assess the similarity between the real and synthetic images in measurable
characteristics, we evaluated performance changes as a function of skin color
(ITA), lesion circularity, and lesion relative area. Although performance on syn-
thetic images was lower compared to real images, similar trends were observed.
Specifically, performance in both synthetic and real examples increased with
lighter skin (Fig. 6a). As illustrated in (Fig. 6b), the impact of lesion circularity
on model performance showed similar trends within the circularity range shared
between the real and synthetic images, where more circular images were easier to
segment. Finally, performance dropped with larger relative lesion areas (Fig. 6c),
possibly due to less precise delineations in larger lesions in the training patient
data.
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Fig. 5. Model performance when trained on real-patient datasets (ISIC, HAM) and
tested on synthetic (S-SYNTH) images generated with different parameters. BF: blood
fraction, MF: melanosome fraction.
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Limitations S-SYNTH is the first skin simulation framework that generates
synthetic skin images with controllable variations. There are a number of limita-
tions to our work. First, S-SYNTH does not model any specific disease presen-
tation, and additional work needs to be performed to evaluate the realism of the
generated examples. Second, the current rendering techniques utilizes an RGB
camera setup, and additional modifications allowing for multispectral imaging,
when validated, might be useful for more advanced algorithms that use a broader
variety of wavelengths. Lastly, although our lesion growth model surpasses those
based on simple geometrical shapes [33], it is to some degree simplistic, partic-
ularly compared to real anatomical and pathological skin characteristics. The
current lesion growth model varies along the simulation timeline and is affected
by material changes but can be further improved by considering the interaction
between the lesion and non-lesion areas.

5 Conclusion and Future Work

We presented S-SYNTH, a novel, knowledge-based simulation pipeline for syn-
thetic generation of dermoscopic images and skin lesions. S-SYNTH procedurally
generates multi-layer 3D skin models, with consideration to optical skin char-
acteristics, and digitally renders synthetic images under realistic lighting condi-
tions. Using S-SYNTH, we generated realistic and varied skin surface models for
sub-surface scattering simulation in the context of skin lesion segmentation, and
compared the resulting synthetic images to public dermatologic benchmarks. We
showed that examples created using S-SYNTH can be used to augment limited
real datasets and identify performance trends.
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