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Abstract. Deep active learning (AL) is commonly used to reduce label-
ing costs in medical image analysis. Deep learning (DL) models typically
exhibit a preference for learning from easy data and simple patterns be-
fore they learn from complex ones. However, existing AL methods often
employ a fixed query strategy for sample selection, which may cause the
model to focus too closely on challenging-to-classify data. The result is
a deceleration of the convergence of DL models and an increase in the
amount of labeled data required to train them. To address this issue, we
propose a novel Adaptive Curriculum Query Strategy for AL in Medical
Image Classification. During the training phase, our strategy leverages
Curriculum Learning principles to initially prioritize the selection of a
diverse range of samples to cover various difficulty levels, facilitating
rapid model convergence. Once the distribution of the selected samples
closely matches that of the entire dataset, the query strategy shifts its
focus towards difficult-to-classify data based on uncertainty. This novel
approach enables the model to achieve superior performance with fewer
labeled samples. We perform extensive experiments demonstrating that
our model not only requires fewer labeled samples but outperforms state-
of-the-art models in terms of efficiency and effectiveness. The code is pub-
licly available at https://github.com/HelenMa9998 /Easy hard AL.
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1 Introduction

Deep learning (DL) has achieved revolutionary progress in the field of medical
image processing [22]. The success of DL models typically depends on the support
of vast amounts of annotated data. However, annotating data for medical images
relies on experts, which is particularly costly and time-consuming [20].

Deep Active Learning (DAL) is an iterative user interaction approach that
requests experts to label only the most informative data point for training DL
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models, which can significantly reduce labeling costs [19]. There are several differ-
ent query strategies to select the most informative data point. The uncertainty-
based query strategy [11, 17] involves selecting data points for which the model
has the lowest confidence in its predictions. The diversity-based query strat-
egy [18] selects a set of data points that are diverse in distribution or varied
among themselves. The hybrid query strategy [1,7] combines the approaches of
uncertainty and diversity by selecting data points that are both highly informa-
tive due to the model’s uncertainty about them and diverse to ensure a broad
representation of the dataset.

Foundational research [3,5,14] reveals that during the training process, DL
models initially focus on identifying simple, recognizable patterns and common
features within data rather than memorizing individual, hard-to-classify data
points. This preference assists DL models in understanding the underlying struc-
ture and general characteristics of new data, thereby enhancing their ability to
generalize to unseen data effectively. However, current DAL methods often use a
fixed strategy to select data points and lack the ability to adaptive adjust to the
evolving learning phases of DL models [1, 7,11, 18]. This slows the convergence
of deep models while increasing the number of labeled data needed for training.

Curriculum learning and self-paced learning are training strategies for ma-
chine learning models that begin with simpler examples and progressively in-
crease complexity, emulating the progressive learning pattern of humans. Cur-
riculum learning follows a predefined sequence, while self-paced learning dy-
namically adapts sample selection based on the model’s progress [12,21]. Both
strategies align with the learning patterns of DL models. However, self-paced
learning require a fully labeled dataset [15], and no existing research in DAL has
yet explored querying examples from easier to more difficult and enabling DL
models to progressively learn from these examples in a sequence from simpler
to more complex. This paper thus investigates the following research question:
Can a curriculum query strategy in DAL improve the performance of DL? How
and why?

To address these problems, we propose a novel approach named Adaptive
Curriculum query strategy for Active Learning (ACAL) in medical image clas-
sification. Unlike existing DAL methods, ACAL is the first algorithm to adapt
its query strategy based on the DL model’s learning stages. Initially, ACAL
selects a diverse range of samples to cover various difficulty levels and learn gen-
eral biomarkers or lesion characteristics. Meanwhile, it monitors the difference
between the distribution of the overall selected data and the entire dataset’s dis-
tribution. When the distribution of selected data closely aligns with the entire
dataset, ACAL transitions to choosing hard-to-classify data points adaptively,
thereby training the DL model progressively from easier to harder data, mimick-
ing an effective learning sequence in DL training. Our experiments demonstrate
that our approach outperforms the state-of-the-art methods by higher classifica-
tion accuracy with fewer labeled samples. This enhancement enables an effective
reduction in labeling costs for different medical image classification scenerios.
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Fig. 1: Comparison of Traditional AL and ACAL: The traditional approach sticks
to a fixed query strategy during the whole process, while ACAL adaptively
adjusts its strategy in sync with the DL model learning process.

2 Proposed Method

Consider a dataset D = {xl}l 1» where x; € R"*% represent medical images

with dimensions hxw. Let Dy = {xu}l vl € Dand Dy, = {(xl,yl)}i ,Vx; €D
denote an unlabeled and a labeled subset of D, respectively, Where y € Y is
the corresponding label for x;, ) is the set of possible labels. An Oracle (e.g.,
clinician) is available to label queried data points from Dy. DAL involves an
iterative loop that starts with a small Dy, and a larger Dy. In each iteration,
a model M is trained on Dy and then used to identify the most informative
samples from Dy, which are subsequently labeled by an oracle and added to
Dy,. This process repeats to improve the model’s performance by incrementally
enriching Dy,. The selection of the most informative samples is guided by a query
strategy  to optimize the performance of a DL model trained on Dy, with the
least amount of labeled data.

Differently from traditional DAL which only relies on a fixed query strategy
as shown in Fig.1, our proposed method Adaptive Curriculum Query Strategy
for Active Learning (ACAL) includes an additional component: the Distribution
Similarity Monitor (DSM). DSM evaluates the similarity between the distribu-
tion of the labeled dataset and that of the entire dataset in each iteration. To
ensure broad coverage of the data space, ACAL utilizes a diversity-based query
strategy to maximize the variety of samples queried until the similarity between
the two distributions meets a predefined threshold. This guarantees that during
the early stages of DL model learning, the classification network has access to
data that facilitates rapid learning of recognizable patterns and common fea-
tures (e.g., brain tumors may exhibit an enhancement effect on MRI scans that
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Algorithm 1 Learning Procedure of ACAL

Require: Dataset D, Budget B, Deep learning model M, Threshold 7, The number
of initial query samples no, The number of querying samples at each iteration n
1: Initialize Dy, by randomly querying no instances from D
2: @ <« Diversity-based Query Strategy
3: while |D.| < B do

4: DU <~ D-Dy,

5: Train model M on Dy,

6: for all x; € D do

7 E + E U encode(x;)

8: if x; € D, then

9: Er + Er Uencode(x;)

10: end if

11:  end for

12:  if @ = Diversity-based Query Strategy AND DSM (p(E)||p(EL)) < 7 then
13: @ < Uncertainty-based Query Strategy
14:  end if

15:  Dg < Query n samples from Dy based on Q
16: D« Dr U DQ
17: end while

tumor area appears brighter than the surrounding tissue). Upon reaching the
similarity threshold, ACAL shifts to an uncertainty-based query strategy, focus-
ing on samples that are challenging to classify. This curriculum approach ensures
that after the DL model acquires basic patterns and features, it also learns to
distinguish between individual, hard-to-classify samples, thereby mirroring the
natural learning sequence in DL training.

ACAL’s learning process is shown in Algorithm 1. It begins by establishing
an initial labeled dataset Dj with a random selection of a small number of
instances from D (line 1) and sets diversity-based query strategy as the base
query strategy @ (line 2). Following this, ACAL then proceeds with a loop that
runs until the size of Dy, reaches a predefined budget B (line 3). This budget
acts as a constraint on the total number of samples that can be labeled. Within
each iteration, ACAL updates the unlabeled dataset Dy by removing samples
already included in Dy, (line 4). Subsequently, the DL model M is retrained
to improve its learning based on the accumulated knowledge from updated Dp,
(line 5). For every instance x; in the dataset D, ACAL encodes x; and adds the
corresponding embedding into the encoded set E. The encoded set Ej, consists of
the embeddings of all the labeled samples from Dy, (line 6 to 11). This algorithm
employs DSM to track the differences in distributions between the full dataset
and the labeled subset (line 12). It is important to note that any method capable
of comparing two distributions may serve as the DSM. In this paper, we employ
the Jensen-Shannon divergence [9] as the metric. If the distribution difference
exceeds the threshold 7, indicating significant dissimilarity, the algorithm queries
n diverse instances from Dy to enhance the model’s generalizability. Otherwise,
it focuses on querying n hard samples that are challenging for the model to
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classify by shifting @ to the uncertainty-based query strategy (line 13), aiming
to improve the model’s accuracy on difficult instances (line 12 to line 15). The
queried samples are then added to the labeled dataset Dy, enriching it with new
information for subsequent training iterations (line 16).

3 Experiments and Results

3.1 Datasets

Two well-known public medical image datasets for different scenarios are used
to evaluate our proposed method.

— BraTS$S 2019 Dataset [4] comprises 3D brain MRI scan images from 335
patients, including 259 with High-Grade Glioma (HGG) and 76 with Low-
Grade Glioma (LGG). Each patient has images from four modalities: T1,
T2, Tlce, and FLAIR. This study specifically uses the FLAIR images of
patients with LGG.

— Breast Cancer Diagnosis Dataset (BACH) [2] includes 400 high-resolution
histopathology images of breast tissue cells. These images are evenly divided
into four categories: Normal, Benign, In-situ Carcinoma, and Invasive Car-
cinoma, with each category containing 100 images.

The training, validation, and test datasets comsist of 7,750, 1,860, and 2,170
patches for the BraTS dataset and 256, 80, and 64 patches for the BACH dataset,
respectively. Online augmentation is applied throughout the process using the
Albumentation library [6] (e.g., Gaussian blur, rotates, and flips).

3.2 Benchmark methods and Evaluation Metrics

We compare nine of the most well-known and commonly used methods in the AL
field, covering uncertainty-based (LeastConfidence (LC) [16], Margin (Marg)
[17], Entropy (Ent) [19], MC-Dropout (MC-D) [11], BALD [11]), diversity-
based (Random (Rand), K-Center-Greedy (KCG) [18]), and hybrid AL ap-
proaches (CDAL [1], ClusterMarginSampling (CMS) [7]).

For ACAL, we explore different combinations of diversity- and uncertainty-
based methods as our base query strategy. Meanwhile, we also introduce two
novel diversity-based query strategies. The first, termed Stratified Uncertainty
Random Sampling (SURS), groups each example in Dy into g categories (e.g., we
choose g = 5 in this study) based on the uncertainty of the classification model’s
prediction for them. From each category, we randomly select 2 examples to form
the query set Dg in each iteration. This approach enables AL to uniformly query
examples across different levels of uncertainty. The second strategy involves clus-
tering examples in Dy into n clusters using K-Medoids, and selecting the center
of each cluster to form the query set Dg in each iteration.

We use the ResNet-18 [10] as the classification model, initializing it with
weights from pre-training on the ImageNet [8] dataset and employing cross-
entropy loss. Using other self-supervised pretrained encoders can be investigated
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Table 1: Model Performance with Varied Label Percentages for BraTS (upper

section) and BACH (lower section) Datasets, with supervised learning accuracy

of 0.897 and 0.713, respectively. The best approach is highlighted in red, while

the approaches ranked second and third are in bold with a grey background.
3

Percentage of D ‘0.1 0.15 0.2 0.25 0.3 Ave.Rank
Query Strategy ‘McaxH»S((l ‘R;mk Mean+Std Rank|Mean+Std Rank|Mean+Std Rank|Mean+Std Rank| V&'
ACAL(Rand|Ent) 0.816+0.030 3|0.855£0.006 1]0.857+0.011 5/0.868+0.013 1/0.851£0.011 8 3.6
ACAL(Rand|LC) 0.812+0.017 5/0.848+0.011 4/0.86010.014 3/0.84740.005 10{0.847+0.019 10 6.6
ACAL(Rand|Marg) |0.812+0.017 5/0.84940.019 3/0.852+0.010 8(0.85540.009 7|0.869+0.008 1 4.8
ACAL(KMed|MC-D) (0.813+0.021 4(0.848+0.014 5/0.860£0.025 2|0.85540.015 8/0.864+0.012 3 4.6
ACAL(Rand|BALD) 0.826+0.023 1|0.854+0.016 2|0.861+0.006 1/0.860+0.011 2|0.867+0.007 2 1.8
ACAL(KCG|Ent) 0.794+0.039 9(0.84340.024 8(0.852+0.015 70.84740.010 9(0.85540.015 4 7.4
Ent 0.780+0.038 11{0.84740.026 6(0.849+0.014 9)0.85740.024 5(0.85340.016 6 7.4
LC 0.718+0.028 13/0.686+0.020 14(0.700+0.029 14/0.69740.032 15(0.69440.031 15 14.2
Marg 0.743+0.028 12(0.768+0.013 12(0.798+0.008 12|0.80140.021 12(0.78740.024 12 12.0
MC-D 0.799+0.046 8(0.82140.034 11{0.820+0.031 11]0.83740.020 11(0.81540.043 11 10.4
BALD 0.81940.018 2|0.828+0.028 10{0.852+0.015 6]0.85740.014 4(0.84740.029 9 6.2
KCG 0.713+0.016 14/0.67840.018 15(0.684+0.038 15)0.7344:0.020 14{0.763+0.024 14 14.4
Rand 0.812+0.017 5(0.84740.023 7|0.861+0.011 1/0.856+0.012 6]0.85240.015 7 5.2
CMS 0.687£0.016 15(0.75140.023 13]0.773£0.016 13]0.758+0.036 13|0.77340.023 13 13.4
CDAL 0.791:£0.031 10/0.83040.014 9/0.848+0.006 10/0.8594-0.007 30.85340.013 5 7.4

Percentage of D |0.15 0.3 0.45 0.6 0.75 Avg.Rank
Query Strategy Mean+Std Rank|Mean-+Std Rank|Mean+Std Rank|Mean+Std Rank|Mean-+Std Rank *
ACAL(Rand|Ent) 0.309+0.096 3]0.41940.084 1]0.60340.032 2(0.691+0.060 2/0.68440.058 5 2.6
ACAL(SURS|LC) 0.300+0.080 6]0.397+0.075 8]0.563+0.077 5(0.68140.074 410.66610.050 7 6.0
ACAL(SURS|Marg) (0.291+0.018 8(0.400+0.071 6(0.528+0.119 10|0.67540.049 6]0.694+0.055 2 6.4
ACAL(KMed|MC-D) |(0.281+0.043 9(0.366+0.060 11/0.64140.053 1{0.706+0.045 1{0.67840.042 | 6 5.6
ACAL(SURS|BALD) 0.33140.072 1]0.350+0.046 14(0.572+0.057 4{0.666+0.053 8(0.716+0.030 1 5.6
ACAL(KCG|Ent) 0.297+0.040 ‘ 7|0.406+0.077 3|0.563+0.121 5|0.65040.107 10(0.65340.124 10 7.0
Ent 0.269+0.043 12(0.37540.071 10{0.500+0.157 14|0.54440.112 15(0.606+0.115 14 13.0
LC 0.303+0.024 5(0.38440.103 9(0.52540.097 11]0.58840.074 14/0.66640.073 7 9.2
Marg 0.281+£0.031 9(0.40340.034 5|0.54740.086 710.67240.077 7/0.691+0.052 3 6.2
MC-D 0.281+£0.049 9(0.31640.068 15(0.484+0.065 15|0.66640.066 8(0.60640.074 14 12.2
BALD 0.269+0.036 12|0.406+0.063 3|0.52240.054 12|0.67840.048 5(0.68840.070 4 7.2
KCG 0.259+0.057 15(0.363+0.104 12|0.58140.087 3|0.63840.084 11{0.647+0.060 12 10.6
Rand 0.30910.096 3|0.40040.075 6]0.544+0.078 9]0.63440.064 12(0.62540.106 13 8.6
CMS [0.2660.090 |  14]0.4090.040 2|0.5060.045 13|0.6844-0.052 3|0.65940.085 9 8.2
CDAL 0.32810.053 2|0.353+0.014 13]0.547+0.119 710.5944-0.090 13]0.6504:0.039 11 9.2

as future work. The classification model is trained for a maximum of 200 epochs
with an early stopping criterion of 5 epochs and uses the Adam optimizer [13]
with a learning rate of 0.0001. The batch size is set to 32 for BraTS and 16
for BACH. We maintained consistent hyperparameter settings across all exper-
iments and for all methods, with the exception of ACAL’s threshold 7. A grid
search was employed to tune 7 for ACAL, using different base query strategies
on each dataset based on preliminary runs. The range for 7 varied from 0.08
to 0.49. The number of initial query samples ng is set to 100 and 10 for BraTS
and BACH, respectively. To simulate the interactive selection process in AL, the
number of querying samples at each iteration n is set to 100 in each iteration for
BraTS and 10 for BACH. At every AL iteration, the model trains until the valida-
tion loss stabilizes. Subsequently, the model undergoes fine-tuning based on the
model from the preceding round to expedite the learning process. For ACAL,
the optimal combinations of diversity-based query strategies corresponding to
each uncertainty-based query strategy are reported.

Five runs are performed for all the approaches. In each run, we measure the
test accuracy at the end of each AL round. The average accuracy and standard
deviation (std) across the 5 runs are reported. Each run is executed on a single
NVIDIA GeForce GTX 1080 Ti GPU. The Python implementation uses PyTorch
version 1.10.1.



Title Suppressed Due to Excessive Length 7

o
©
el

Testing Accuracy
)
N
~

Testing Accuracy

Vo CDAL 0.69
0.69 . - = CMS
. —— ACAL(Rand|Ent) 0.65
0.65
° ° ° ° ° ° ° ° ° ° ° ° °
(=} a L - N N w (=] [=} - : N N w

Testing Accuracy
Testing Accuracy

© © © o o

Training dataset size Training dataset size
() (d)

Fig.2: Performance comparison average over five rounds using different query
strategies: Ent, LC in BraT§S, and Ent, MC-D in BACH. ACAL consistently
achieved almost the highest scores across all methods, demonstrating its effec-
tiveness both before and after transformation.

3.3 Performance Comparison

The experimental results for the BraTS and BACH with different percentages
of labeled data are shown in Table 1. Figure 3 shows the representative results
across all AL rounds. Other figures were omitted due to space restrictions.

On BraTSs, our proposed approach ACAL(Rand|BALD), ACAL(Rand|Ent),
and ACACL(KMed|MC-D) achieve the best, second best, and third best average
ranks, respectively, across five different percentages of labeled data. From Figures
2a and 2b, it is evident that ACAL(Rand|Ent) and ACAL(Rand|LC) outperform
Ent and LC prior to reaching the threshold 7. This suggests that during the early
training stages of a DL model, querying diverse examples can help the model
learn general biomarkers or lesion characteristics from a variety of examples,
which can lead to quicker improvement in performance. After ACAL shifted the
query strategy to an uncertainty-based approach, it continued to show significant
advantages compared to its base query strategy. This could be because a DL
model trained on data selected solely by an uncertainty-based active learning
method may focus too much on difficult examples, requiring more labeled data to
achieve satisfactory performance. It is worth noting that as the number of queried
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Fig. 3: Data distribution in the AL cycle prior to the transition to uncertainty-
based querying in ACAL for dataset BraTS, utilizing t-SNE for two-dimensional
projection. Red dots represent data queried by AL, and blue dots denote un-
labeled data. The accuracy of the DL model on the test dataset is 0.851 us-
ing ACAL(Rand|Ent) in 3a, 0.754 using Ent (3b), transitioning at 700 samples
(0.09). Accuracies were 0.8701 for ACAL(Rand|LC) depicted in 3c, and 0.6313
for LC sampling in 3d with transmission point of 1400 (0.18).

data increases, the performance advantage of ACAL over CDAL diminishes (see
Table 1, Figures 2a and 2b). This is because, with an increase in labeled training
data, every method is able to learn effectively.

ACAL(Rand|Ent) has the best average performance on BACH, while both
ACAL(KMed|MC-D) and ACAL(SURS|BALD) are tied for the second-best av-
erage rank across the various labeled data percentages (Table 1). However, the
smaller test size of the BACH dataset compared to BraTS leads to greater
fluctuations in the performance of each method (e.g., a single incorrect pre-
diction can significantly lower the accuracy). Also, because the training size for
BACH is smaller than that for BraTS, the performance differences are not as
pronounced. Nonetheless, Figures 2c¢ and 2d clearly show the advantage of the
proposed method over the base query strategy.

To further analyze the impact of different query strategies on the performance
of DL models, we plot the representative distributions of variously labeled data
selected by different query strategies on BraTS, as shown in Fig.3. Observations
from Figures 3b and 3d, show that uncertainty-based AL primarily focuses on
querying examples from specific areas. This focus may hinder the DL model’s
ability to identify recognizable patterns and common features. Such patterns and
features are essential for the model’s rapid convergence, particularly during the
initial learning phases. Consequently, the DL, model trained with examples from
3a has nearly 20% higher accuracy, and from 3c has nearly 24% higher accuracy,
compared to the DL models trained with examples from 3b and 3d, respectively.

4 Conclusion

In this study, we address that current AL approaches do not align with the
learning patterns of DL models, which prioritize easy and diverse examples before
tackling difficult ones. We propose ACAL, the first AL approach that adapts
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query strategies to match the learning stages of DL models. ACAL starts with
a diversity-based query strategy to maximize sample diversity, accelerating DL
models’ understanding of the underlying structure and general characteristics of
new data. As training progresses, it shifts to an uncertainty-based strategy for
hard-to-learn cases.

We performed experiments with two widely used medical image classification
datasets to evaluate ACAL. The results show that ACAL can achieve better clas-
sification performance with fewer query images by converging faster than fixed
AL query strategies. This can significantly reduce labeling costs, which is crucial
when dealing with large amounts of unlabeled data in medical imaging analysis.
Future work includes enhancing performance by progressing cold-start AL, ex-
ploring different metrics to measure the distance between two distributions, and
validating on larger datasets.
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