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Abstract. Accurate segmentation of the pulp cavity, root canals, and
inferior alveolar nerve (IAN) in dental imaging is essential for effective or-
thodontic interventions. Despite the availability of numerous Cone Beam
Computed Tomography (CBCT) scans annotated for individual dental-
anatomical structures, there is a lack of a comprehensive dataset cover-
ing all necessary parts. As a result, existing deep learning models have
encountered challenges due to the scarcity of comprehensive datasets
encompassing all relevant anatomical structures.We present our novel
Pulpy3D dataset, specifically curated to address dental-anatomical struc-
tures’ segmentation and identification needs. Additionally, we noticed
that many current deep learning methods in dental imaging prefer 2D
segmentation, missing out on the benefits of 3D segmentation. Our study
suggests a UNet-based approach capable of segmenting dental struc-
tures using 3D volume segmentation, providing a better understanding
of spatial relationships and more precise dental anatomy representation.
Pulpy3D contributed in creating the seeding model from 150 scans, which
helped complete the remainder of the dataset. Other modifications in the
architecture, such as using separate networks, one semantic network, and
a multi-task network, were highlighted in the model description to show
how versatile the Pulpy3D dataset is and how different models, architec-
tures, and tasks can run on the dataset. Additionally, we stress the lack
of attention to pulp segmentation tasks in existing studies, underlining
the need for specialized methods in this area. The code and Pulpy3D
links can be found at https://github.com/mahmoudgamal0/Pulpy3D
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1 Introduction and Related Work

With advancements in imaging technology, Cone Beam Computed Tomography
(CBCT) has demonstrated significant improvements over traditional CT scans
in the dental-maxillofacial area due to its ability to unveil the intricate details of
small anatomical structures within the oral cavity. However, this ability remains
underutilized due to the absence of comprehensive and task-specific datasets
necessary for deep-learning models to perform various tasks, including tooth
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and lesion detection, inferior alveolar nerve and bone segmentation, and pulp
cavity and root segmentation.

Navigating the pulp and root morphology variations among different individ-
uals and age groups presents a tough challenge. Current methodologies [5, 17]
typically approach this challenge by initially isolating the hard tooth structure,
then extracting the pulp region and proceeding with segmentation. However,
many existing solutions rely on 2D slices [19], neglecting the volumetric features
inherent in 3D volumes.

Fig. 1. Example 3D CBCT scan with overlaid annotations. Left: IAN annotation from
ToothFairy. Left Center: Pulp annotation from Pulpy3D. Right Center: Pulp and IAN
annotations from Pulpy3D. Right: Instance annotations of pulp and IAN from Pulpy3D.

Accurately segmenting the Inferior Alveolar Nerve (IAN) is crucial in surg-
eries involving dental implant placement in the jawbone, where precision is
paramount due to the proximity of the IAN. Segmenting the dental pulp and
root canal morphology is crucial for successful root canal treatments and re-
ducing failures and retreatment cases. Utilizing 3D pulp segmentations and re-
constructed surface models aids in accurately rebuilding anatomical structures,
enhancing treatment outcomes. Comprehending internal anatomy relationships
is vital before proceeding with endodontic therapy, enabling a precise diagnosis.
Figure 1 shows an example of pulp cavity, root, and IAN.

In this paper, we introduce the Pulpy3D dataset based on 3D CBCT scans.
Pulpy3D is the largest publicly available dataset for both pulp and IAN segmen-
tation. This is a unique contribution to the community, which we believe will
bring more attention to the problem of pulp segmentation and will allow the rise
of more literature on both dental research and deep learning algorithms. Also,
we provided comparisons of three approaches to solving the segmentation prob-
lem(s) based on single and multi-task semantic segmentation objectives. We also
propose the APPU model, which is based on the POSPADUNET [3] by adding
gated attention blocks, which proved to be a better choice for our experiments.

1.1 Related Work

In this section, we discuss the most relevant work on the segmentation of mandibu-
lar structures, specifically focusing on teeth pulp cavity, root canals, and (IAN).
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Non-Deep Learning Methods: Active contour models have been utilized in
tooth segmentation from volumetric CT images by employing a 2D level set
method on a slice-by-slice basis [7, 21]. Contour propagation through consecu-
tive 2D slices from CT scans allows a better view of the reconstructed 3D volume
when all the 2D slices were concatenated [6]. A hybrid level-set and mesh seg-
mentation technique [18] involved the use of CT scans, where both maxillary
and mandible teeth were in contact. As CBCT scans became more common, the
optimal segmentation threshold was achieved by employing an algorithm that
uses the plane intercept histogram of reciprocal cross entropy which is followed
by the binarization technique [16].
Pulp Cavity Segmentation: Pulp cavity and root segmentation were achieved
by a long-short residual connection encoder-decoder network. The output masks
were then processed by an advanced level set algorithm called 3D Chan-Vese [23].
CBCT scans combined with panoramic views were utilized to extract bounding
boxes for single-rooted and multi-rooted teeth using an RPN with an FPN back-
bone. These bounding boxes were subsequently fed into a UNet to refine pulp
segmentation [5]. 2D CBCT slices were fed into a 2D UNet and MWT for the seg-
mentation of jaw, teeth, and pulp chambers [19]. To prioritize root segmentation,
multitask approaches involving tooth and pulp segmentation were employed. In
the first stage, DentalNet extracted feature maps for tooth instance segmentation
and identification. In the second stage, ROI extraction and PulpNet performed
pulp segmentation and ROI refinement using regression heat maps [17].
IAN Segmentation: Deep label propagation and positional embeddings of
volumetric CBCT voxels showed significant improvements in IAN segmentation
[3]. Through the process of selective retraining, a semi-supervised self-training
nnUNet with Strong data augmentation produced better results [11]. IAN seg-
mentation is not only applicable to CBCT scans. Efficient UNet models produced
IAN segmentation on panoramic scans of the maxillofacial area [20].

2 Pulpy3D Dataset

2.1 Motivation

Most of the previous studies were done on 2D slices of 3D CBCT scans or pre-
sented insufficient 3D CBCT scans due to a lack of labeled samples in the litera-
ture [3, 24]. Few studies were done on voxels of single teeth cut from the complete
CBCT scan [5, 7, 10, 17]. Other studies had less than 100 samples for the whole
study [1, 9, 16, 15, 24]. These factors motivated us to introduce Pulpy3D which
is the largest publicly available 3D CBCT dataset that provides the annota-
tions for the pulp and IAN in the same scans. We based our new dataset on the
ToothFairy [2] dataset which provided the IAN segmentation annotations only.
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2.2 Description

Pulpy3D1 consists of the original 443 scans of the lower mandibular jaw of the
ToothFairy Dataset2 [2]. Each scan file is associated with five ground truth
annotations. In addition to the annotations for IAN segmentation labels from
the ToothFairy dataset, we provide the pulp segmentation labels, pulp instance
segmentation labels, and the combined labels for merging the pulp with IAN. Our
dataset contains the splits used to define the train set, test set, and validation
set. We accompany the dataset with the definition of labels and label maps of
the teeth according to the FDI teeth numbering system.

2.3 Data Collection

Considering the pulp annotations, we used 150 random scans from the Tooth-
Fairy dataset. Dental medical experts and practitioners, led by an individual
with 15 years of experience, manually annotated the pulp cavity and root canals
using the ITK-Snap tool [22]. We then used our pre-trained model, discussed
later, to learn how to segment the pulp space. We used the model weights to
infer the remaining (293) scans. Dental experts performed minor fixes while re-
viewing the model outputs. We have also provided annotations of the mandibular
jaw only after we cut the maxillary parts.

Instance segmentation annotated labels of each single tooth pulp in the
mandibular jaw were created and included in Pulpy3D. The class label would
be the number of the tooth according to the FDI numbering system. Instance
labels were obtained by performing the clustering algorithm DBSCAN [4] on
the generated semantic segmentation labels. Then, using a hybrid approach that
involves manual intervention and automation tools that we developed, we were
able to perform one-click relabeling of the clusters obtained from DBSCAN.

Nerve annotations are obtained from the original ToothFairy dataset [2]. All
CBCT scans contain sparse labels which are very small indications of where the
nerve should be. The sparse labels are easier to create manually. These labels
undergo circular expansion [3] to be able to train our model.

3 Model Description

Our model architecture is based on POSPADUNET [3] which was used for the
segmentation of the inferior alveolar nerve. We extended this setting to make our
network, Attention-POSPADUNET (APPU), which was equipped with gated
attention blocks [13]. Figure 2 shows the architecture for the APPU. We propose
different benchmarks on the Pulpy3D dataset using various architectures. The
architectures explore separate independent networks for segmenting the pulp and
IAN. We also discuss multi-task segmentation using a single semantic network
and two decoder networks.
1 Pulpy3D will be available publicly upon the acceptance of the paper.
2 The training set, named ToothFairy Dataset, is publicly available under CC BY-SA.
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Fig. 2. Top Left: Single Encoder-Decoder organization based on APPU. Top Right:
Multi-task organization based on APPU. Bottom: Detailed breakdown of encoder and
decoder architectures. Best seen in zoom and color

3.1 Single Task

We employed the APPU model in a single-mode semantic segmentation task,
training a single instance of the model for a specific purpose.

Two Separate Nets Two distinct APPU models were used: one dedicated to
segmenting pulp and root structures, and another focused on the IAN. The pre-
dictions generated by both models were then combined into a unified prediction.

One Semantic Network An alternative approach involved training a single
APPU model capable of predicting segmentations for both the pulp and IAN
with distinct labels (see Figure 1).

3.2 Multi-task

We perform a multi-task training approach [1, 17] in which the contracting path is
used as a commonly shared encoder and the expanding path is used as a decoder.
We use two decoders, one for the pulp cavity and root canal segmentation and the
other for the IAN segmentation. Figure 2 shows the used network architectures.

4 Experiments and Results

In this section, we discuss the experiments carried on with the Pulpy3D dataset
and the results achieved.
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4.1 Implementation Details

All experiments were run using Python 3.10.12 and PyTorch 2.0.1 on Nvidia
RTX 4090 24GB GPU. We used TorchIO 0.19.1 for image preprocessing and
sampling using Label Sampler. Stochastic Gradient Descent (SGD) was chosen
as the optimizer with a starting learning rate of 0.1 and a plateau multi-step
learning rate. Our main metrics are mean Dice Similarity Coefficient (DSC) and
mean Intersection over Union (IoU). A single experiment for such models would
take approximately two to three days in this setting.

Table 1. Baseline Comparison for Seeding Model

Model DSC IoU
POSPADUNET[3] 0.76018 0.6159
UNETR[8] 0.73018 0.5777
UNET3D[14] 0.55529 0.3867
VNET3D[12] 0.63134 0.4655
APPU 0.76693 0.6242

4.2 Quantitative Evaluation

Seeding Model Selection Manually annotating the 3D CBCT for pulp seg-
mentation is overly labor-intensive. We recognized that developing a seeding
model would significantly reduce the time required to annotate the original 443
3D CBCT scans from ToothFairy. We accelerated the annotation process by
evaluating various baselines on 150 scans, with 17 reserved for testing purposes.
The subsequent step involves generating candidate segmentation masks using the
most effective seeding model and enabling dental experts to review and refine
the segmentation masks. Notably, annotating the initial 150 scans without the
seeding model took approximately 8 hours per scan. However, with the seeding
model, dental experts reviewed and edited the masks within just half an hour
per scan.

Another benefit obtained from the seeding model was a reduction in the
training time required for our subsequent experiments. This was achieved by
evaluating multiple baselines on the limited set of 150 scans and later selecting
the best-performing model for all future experiments. Table 1 illustrates that
basic UNET3D and VNET3D did not perform well. UNETR, a transformer-
based UNET, outperformed UNET3D and VNET3D. However, a significant
enhancement was observed with the utilization of Positional Padding UNET
(POSPADUNET) compared to other baselines.

A third advantage is introducing our APPU model, as detailed in Section 3.
We leverage the attention mechanism and the superiority of POSPADUNET
compared to other baselines. From Table 1, we note a slight improvement in the
Dice Similarity Coefficient and a more substantial increase in the Intersection
over Union.
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Segmentation Results We ran multiple experiments: a single-task network for
pulp segmentation, a single-task network for nerve segmentation, a single-task
semantic segmentation network for pulp and nerve collectively, and a multi-task
network for pulp and nerve. We used 373 scans for training, 30 for validation,
and 40 for testing. Table 2 presents the scores obtained for the segmentation
tasks.

We observe that the best-performing approach is to have two separate net-
works, one for pulp segmentation and the second for the IAN segmentation. The
multi-task with one encoder and two decoders performed the worst since the
IAN structure differs from the pulp.

We observe that the semantic segmentation network did a better job for
the joint pulp and IAN segmentation task when compared to the multi-task
approach. However, we can see that the multi-task approach did better for IAN
segmentation.

Table 2. Segmentation results of training two networks separately. Bold values indicate
the best result. Underlined values indicate the second-best result.

Output DSS IoU
Unified Segmentation from two separate networks

Pulp Segmentation 0.7958 0.7019
IAN Segmentation 0.7543 0.6183
Pulp + IAN Segmentation 0.7820 0.6524

Semantic Segmentation of a single network
Pulp Segmentation 0.7589 0.6530
IAN Segmentation 0.7015 0.5520
Pulp + IAN Segmentation 0.7383 0.5958
Multi-task common encoder multiple decoders network
Pulp Segmentation 0.7362 0.6213
IAN Segmentation 0.7201 0.5761
Pulp + IAN Segmentation 0.7252 0.5803

4.3 Qualitative Evaluation

We present visual representations of predicted labels compared to ground truth
labels. Figure 3 displays predicted labels for one patient, illustrating how the
labels manifest across three planes. Additionally, Figure 4 presents a 3D visual-
ization comparing the ground truth labels with the predicted ones, highlighting
the disparities between them3.

For the two single networks, we observe some islands mainly in the nerve seg-
mentation, which can be further removed by applying a post-processing scheme.

3 Codes and results will be available on GitHub after acceptance.
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Fig. 3. Predicted pulp and nerve labels, left: axial, center: coronal, right: sagittal

Fig. 4. Example results from 3D segmentation of pulp and nerve. Ground truth labels
are leftmost. Each pair has prediction labels, left, and overlapping of ground truth
labels with predictions, right. The overlapping of labels has the following color code:
Green for True Positives, Yellow for False Positives, and Red for False Negatives.

5 Conclusion and Future Work

In conclusion, the present study has provided valuable contributions to develop-
ing an automatic pipeline for mandibular semantic segmentation, demonstrating
promising results for segmenting teeth pulp cavity, root canals, and the Infe-
rior Alveolar Nerve (IAN) on 3D CBCT scans. Henceforth, this endeavor opens
up various opportunities for future research and enhancements. For example,
instance segmentation to uniquely identify each tooth number is a promising
direction. Additionally, augmenting the Pulpy3D dataset with supplementary
labels for tooth-hard tissue could enhance segmentation accuracy. Furthermore,
incorporating different annotations to identify lesions, cavities, and other dental
anomalies holds the potential for constructing a complete segmentation scheme.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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