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Abstract. Positron Emission Tomography (PET), an advanced nuclear
imaging technology capable of visualizing human biological processes,
plays an irreplaceable role in diagnosing various diseases. Nonetheless,
PET imaging necessitates the administration of radionuclides into the
human body, inevitably leading to radiation exposure. To mitigate the
risk, many studies seek to reconstruct high-quality standard-dose PET
from low-dose PET to reduce the required dosage of radionuclides. How-
ever, these efforts perform poorly in capturing high-frequency details in
images. Meanwhile, they are limited to single-dose PET reconstruction,
overlooking a clinical fact: due to inherent individual variations among
patients, the actual dose level of PET images obtained can exhibit con-
siderable discrepancies. In this paper, we propose a multi-dose PET re-
construction framework that aligns closely with clinical requirements and
effectively preserves high-frequency information. Specifically, we design a
High-Frequency-guided Residual Diffusion Model (HF-ResDiff) that
enhances traditional diffusion models by 1) employing a simple CNN
to predict low-frequency content, allowing the diffusion model to focus
more on high-frequency counterparts while significantly promoting the
training efficiency, 2) incorporating a Frequency Domain Information
Separator and a High-frequency-guided Cross-attention to further as-
sist the diffusion model in accurately recovering high-frequency details,
and 3) embedding a Dose Control module to enable the diffusion model
to accommodate PET reconstruction at different dose levels. Through
extensive experiments, our HF-ResDiff outperforms the state-of-the-art
methods in PET reconstruction across multiple doses.

Keywords: PET Reconstruction - High-frequency Restoration- Resid-
ual Diffusion Model - Discrete Wavelet Transform.

1 Introduction

Positron Emission Tomography (PET) is a sophisticated functional imaging
modality, distinguished by its sensitive visualization of biological processes within



2 Z. Tang et al.

the human body [16]. Capitalizing on this advantage, PET plays a crucial role in
diagnosing and early intervening in many diseases, such as Alzheimer’s disease,
cancers, and others [18]. Nevertheless, PET imaging requires the injection of a
certain dosage of radioactive isotopes into the human body to obtain images that
meet clinical diagnostic needs, which inevitably introduces radiation hazards [2].
To mitigate this predicament, a trade-off approach focusing on reconstructing
high-quality standard-dose PET (SPET) from low-dose PET (LPET) is pro-
posed to balance diagnostic efficacy with patient safety.

Over the past few decades, numerous PET enhancement algorithms have
been explored. The earliest are based on filtering methods, such as non-local
means [1], bilateral filters [10], and guided filters [25]. While these methods are
notably straightforward, they are limited in performance and often result in
overly smoothed images. With the advent of deep learning, a new generation
of neural network-based PET enhancement algorithms are introduced [6, 19, 12].
Benefiting from the powerful neural networks, these methods often achieve com-
mendable results. However, it is still challenging to reconstruct high-frequency
details in PET images [13,15]. More importantly, these end-to-end approaches
generally focus only on single-dose PET reconstruction, which contradicts the
clinical fact: due to inherent individual variations among patients, the actual
dose level of PET images obtained can exhibit considerable discrepancies. These
limitations restrict their application in real-world clinical settings.

Recently, the diffusion models have demonstrated immense success in image
generation [9]. By deconstructing complex image mapping tasks into a series
of denoising steps, diffusion models surpass other methods in generative capa-
bility. Nonetheless, directly applying diffusion models to PET reconstruction
poses several significant challenges. First, unlike 2D photographic images, PET
scans are three-dimensional, which markedly amplifies the already considerable
computational demands of diffusion models. Second, the iterative noise addition
and removal process may result in the erosion of high-frequency details, which
is unacceptable in the context of PET imaging as the preservation of detailed
information is imperative for accurate diagnostics |7, 14, 5].

To this end, inspired from [21], we propose the High-Frequency-guided Resid-
ual Diffusion Model (HF-ResDiff) adaptable for multi-dose PET reconstruction
with an emphasis on high-frequency details. Specifically, we use a less com-
putationally intensive CNN to recover low-frequency components with opti-
mized efficiency. Consequently, the diffusion model is solely employed to pre-
dict the residual between the initial output of the CNN and the target SPET,
i.e., the high-frequency counterparts. Meanwhile, we embed a Frequency Do-
main Information Separator (FD-Info Separator) and a High-frequency-guided
Cross-attention (HF-guided CA) within the diffusion model, which isolate high-
frequency information and thus better recover intricate details. Furthermore,
we introduce a Dose Control module, enabling our HF-ResDiff to accommo-
date multi-dose PET reconstruction. Extensive experiments conducted on public
datasets demonstrate that our method outperforms state-of-the-art approaches
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both quantitatively and qualitatively, underscoring its promising potential for
real-world clinical applications.

2 Methodology
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Fig. 1. Overview of the proposed method. a) Pipeline for both training and testing
phases; b) Architecture of the denoising network of HF-ResDiff, with details of HF-
guided CA depicted in ¢); and d) Mechanism of FD-Info Separator, with the structure
of ResSE depicted in e).

The pipeline of our HF-ResDiff is illustrated in Fig. 1. Given an input LPET
image x with a dose level of d, it is first passed through a pre-trained CNN
to generate a low-frequency coarse prediction z.y,. Subsequently, x.,, is fed
into the diffusion model, which is integrated with FD-Info Separator and HF-
guided CA for further high-frequency restoration. Meanwhile, the Dose Control
module extracts dosage-specific embedding D from the dose level d to control
the diffusion model for tailored reconstruction. The final reconstructed PET is
obtained by adding the low-frequency prediction and the high-frequency residual
together. Below, we introduce the details of each component within HF-ResDiff.

2.1 Pre-train CNN for Predicting Low-Frequency Information

Predicting low-frequency information from images is much simpler than cap-
turing high-frequency details. Deploying powerful diffusion models to recover
low-frequency image information is inefficient, resulting in unnecessary compu-
tational expenditure. In light of this, in our HF-ResDiff framework, the diffusion
model is solely employed to reconstruct the high-frequency content in PET im-
ages, while the initial prediction of low-frequency information is entrusted to the
less computationally demanding CNN.
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To maximize the capability of CNN in predicting both low-frequency and
an extended range of high-frequency information, thereby alleviating the bur-
den on the diffusion model, we design two specialized loss functions Lppp and
Lpwr based on common frequency processing operations, i.e., the Fast Fourier
Transform (FFT) [4] and the Discrete Wavelet Transform (DWT) [17]. Lppr
calculates the mean squared error (MSE) between the magnitudes of the FFT co-
efficients derived from the ground truth (GT) and the prediction. This constraint
targets at the consistency of overall frequency distribution. In comparison, £Lpwr
exclusively concentrates on the high-frequency spectrum. The DWT decomposes
the GT and the prediction into eight distinct sub-bands (one low-frequency sub-
band and seven high-frequency sub-bands). Lpw only calculates the MSE be-
tween the high-frequency sub-bands of GT and prediction correspondingly. The
final training loss Loy for CNN is formulated as follows:

Lony = Lar + aLrrr + BLpwT, (1)

where a and 8 are hyperparameters used to adjust the weights. Lo directly
calculates the MSE between the GT and the prediction in the spatial domain.
In this manner, we can pre-train a CNN to generate preliminary prediction x .y,
dominated by low-frequency contents but also containing partial high-frequency
elements.

2.2 HF-ResDiff Model

Subsequently, z.,, is input into the diffusion model to predict high-frequency
residuals. Herein, we design the FD-Info Separator and HF-guided CA based on
FFT and DWT to further assist the diffusion model in capturing high-frequency
information.

FD-Info Separator After z.,, is input into the diffusion model, the FD-Info
Separator initially segregates it into high-frequency z g and low-frequency xp
components, allowing the network to distinctly focus on reconstructing infor-
mation across varying frequency bands. The detailed structure of the FD-Info
Separator is shown in Fig. 1 d). For 2., € REXWXDPXC "we first perform FFT
to obtain the frequency domain feature map M and then construct a high-pass
filter and a low-pass filter, with their standard deviation o calculated as:

1
o =min(|ResSE(M) + §l|, 1), (2)
where [ = min(H, W, D). The ResSE (Residual Squeeze and Excitation) module,
depicted in Fig. 1 e), is designed based on [8] and [11] to adaptively calculate

the range of 0. With o, the high-pass H(u,v, k) and low-pass L(u,v,k) filters
are given as:

H(U,U, ]4}) —-1— e—P2(u,v,k)/?a'z7 L(U,U, k‘) — e—P2(u,v,k)/?a'r"7 (3)



HF-ResDiff for Multi-dose PET Reconstruction 5

where P(u, v, k) is the distance from any point (u, v, k) in the frequency domain
to the center point. We then obtain the filtered feature maps by multiplying
M with H(u,v,k) and L(u,v,k), and perform inverse FFT (IFFT) on them to
acquire zgp and zpp in the spatial domain.

FD-Info Separator allows for an explicit filtering of high and low frequency
components based on FFT. The two resulted feature maps xgpr and xp g, along
with original .y, and current noisy image x;, are all concatenated across the
channel dimension and fed into the denoising network.

HF-guide CA The classic UNet architecture employs skip connections to fuse
features across varying scopes [20], yet it falls short in adequately capturing
high-frequency components. Moreover, due to noise interference, the boundary
between high and low frequency components is not constant during the diffusion
process. In such context, DWT is more suitable for frequency analysis as it serves
as an adaptive segregation. Therefore, we integrate a HF-guided CA based on
DWT to enhance the network’s ability to utilize high-frequency information and
synthesize fine-grained details.

The details of the HF-guided CA are shown in Fig. 1 ¢). Specifically, we first
apply DWT on the input z.,, and segregate the high-frequency sub-bands to
generate () through a 1 x 1 convolution. Concurrently, within each layer of the
UNet, the downsampled feature map undergoes distinct linear transformations
to produce K and V. The output My can be obtained as follows:

QK" >

My, s = Softmax ( V, (4)
f /dk

where dj, is the number of columns of matrix ). Mj,; is then concatenated with

the corresponding upsampled feature map on the decoder side, as depicted in
Fig. 1 b).

2.3 Multi-dose PET Reconstruction

To ensure our HF-ResDiff model is adaptable for multi-dose PET reconstruction
scenarios, we devise a Dose Control module to steer and regulate the diffusion
model for varying doses. Similar to the time step embedding approach, we utilize
the sinusoidal positional encoding [22] to encode the dose level d associated with
the input LPET into a dose embedding D:

sin (d X exp (77 10g(£2?0)X2i
cos (d X exp (—10g(10000)><(2i—1))) if 5 is odd

dim

if 7 is even

(5)

where dim is the dimension of the model, and 7 is the dimension index (ranging
from 0 to dim - 1). The sine and cosine functions provide a unique encoding for
each dose level, allowing the model to discern intricate differences in different
dose levels. The resulting dose embedding D is then fed into each residual block
of the denoising network along with the time step embedding T'.
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Table 1. Quantitative comparison of our HF-ResDiff with five state-of-the-art gener-
ation methods, in terms of PSNR [dB] and SSIM [%].

Method | DRF=50 | DRF=10 | DRF=2

| SSIM PSNR | SSIM PSNR | SSIM PSNR
3D-UNet [3] | 65.02(7.17) 28.29(0.42) | 78.35(3.89) 32.24(0.32) | 81.51(3.39) 33.57(0.23)
3D-cGAN [24]| 76.08(5.58) 30.66(0.54) | 89.32(2.03) 35.88(0.54) | 92.01(1.23) 37.86(0.55)
PET-Diff [5] | 87.56(2.94) 32.77(0.55) | 90.18(1.14) 36.97(0.75) | 95.28(0.29) 40.58(0.58)
DISGAN [23] | 83.08(5.51) 33.21(0.41) | 93.49(0.82) 38.66(0.40) | 94.94(0.78) 40.94(0.45)

Con-Diff [7] | 88.19(1.96) 33.17(0.36) | 90.60(2.29) 36.63(0.59) | 96.57(0.33) 41.28(0.57)
Proposed  |89.83(1.92) 34.24(0.34)|93.71(0.90) 38.75(0.62)|97.20(0.21) 41.69(0.53)

2.4 Implementation Details

Our HF-ResDiff is implemented using the PyTorch framework and trained on a
Nvidia Tesla V100 GPU with 40GB memory. a and g in Equation 1 are initialized
as 0.2 and 0.1 respectively. The number of time steps for the diffusion model is set
to 2000 during training and 400 for testing. The training process lasts 40 epochs,
using Adam optimizer with a learning rate of 0.0001. The quantitative results
are evaluated based on two metrics, i.e., Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM).

3 Experiments

3.1 Dataset

Our dataset originates from Ultra Low Dose PET Imaging Challenge Dataset®.
This dataset contains whole-body 18F-FDG PET imaging samples acquired from
Siemens Biograph Vision Quadra and United Imaging uEXPLORER. We use a
subset of 197 subjects to develop our method, with 157 subjects for training and
the rest 40 for testing. LPET with dose reduction factors (DRFs) at 2, 4, 10, 20,
50, and 100 are reconstructed from the counts of a time window resampled at
the middle of the acquisition, with time reduced correspondingly. In this study,
we focus on the abdominal PET only, so the whole-body scans are cropped to
the abdominal region, with a resolution of 256 x 256 x 128. To reduce the
dependence on GPU memory, we extract the overlapped patches of size 64 x 64
x 64 from each cropped abdominal PET.

3.2 Comparative Experiments

We compare our proposed method with five state-of-the-art methods, which
can be divided into three classes: 1) CNN-based method, including 3D U-Net
[3]; 2) GAN-based method, including 3D-cGAN [24] and DISGAN [23]; and
3) Diffusion model-based method, including PET Diffusion (PET-Diff) [5] and

® https://ultra-low-dose-pet.grand-challenge.org/Dataset /
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SPET LPET  3D-UNet 3D-cGAN PET-Diff DISGAN Con-Diff Proposed

Fig. 2. Visual comparison of reconstructed PET images produced by six different meth-
ods. From left to right are the SPET, LPET, results of five other comparison methods
(3rd-7th columns) and our HF-ResDiff (8th column). The corresponding error maps
between the generated results and SPET are shown in the 2nd, 4th, and 6th rows.

Contrastive Diffusion (Con-Diff) [7]. All comparison methods, as well as our
proposed method, are implemented using a consistent data processing approach.
The quantitative and qualitative results are provided in Table 1 and Fig. 2,
respectively.

Quantitative Comparison: The results in Table 1 show that our HF-ResDiff
achieves the best overall performance and surpasses other diffusion model-based
methods. It validates the efficacy of our enhancements to the traditional diffusion
model. Moreover, an important observation is the relative stability of our HF-
ResDiff model when the DRF increases. In contrast, competing methods tend
to experience a pronounced decline in performance under similar conditions.
This demonstrates that our HF-ResDiff is robust to PET reconstruction across
varying doses, highlighting its potential for clinical application.

Qualitative Comparison: The PET images reconstructed under three different
imaging doses are shown in Fig. 2. It is suggested that, across all doses, our
HF-ResDiff can reconstruct PET images with the slightest noise but the clearest
detailed texture. Further, the PET images reconstructed by our HF-ResDiff have
the lightest color in the error maps, demonstrating their closest similarity to the
SPET. All these observations validate the effectiveness of our proposed HF-
ResDiff and its superior performance over the state-of-the-art approaches.
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Table 2. Quantitative results of ablation study, in terms of PSNR [dB] and SSIM [%)].

Method | DRF=50 | DRF=10 | DRF=2
| SSIM PSNR | SSIM PSNR | SSIM PSNR
Std-Diff 87.56(2.94) 32.77(0.55) | 90.18(1.14) 36.97(0.75) | 95.28(0.29) 40.58(0.58

)
CNN-Diff | 88.42(2.03) 33.28(0.38) | 91.66(0.97) 37.60(0.67) | 95.87(0.29) 40.61(0.61)
CNN-Diff-FD| 89.19(1.96) 34.09(0.37) | 92.96(0.93) 38.41(0.66) | 96.68(0.23) 41.44(0.57)
Proposed 89.83(1.92) 34.24(0.34)(93.71(0.90) 38.75(0.62)|97.20(0.21) 41.69(0.53)

3.3 Ablation Study

To verify the effectiveness of each proposed strategy, we conduct a series of ab-
lation studies, including: 1) Std-Diff: standard diffusion model; 2) CNN-Diff:
adopting CNN for coarse prediction; 3) CNN-Diff-FD: CNN-Diff with frequency
domain processing, i.e., FD-Info Separator and HF-guided CA; and 4) HF-
ResDiff (proposed): CNN-Diff-FD with the Dose Control module. All methods
use the same experimental settings, and their quantitative results are given in
Table 2.

Statistics in Table 2 reveals several key insights into our study. First, the
CNN-Diff model outperforms Std-Diff, highlighting the advantage of integrat-
ing a pre-trained CNN for low-frequency content prediction, which effectively
alleviates the workload on the diffusion model and leads to improved outcomes.
Second, the CNN-Diff-FD model, enriched with frequency domain processing,
exceeds the performance of the CNN-Diff model and underscores the benefit of
incorporating the FD-Info Separator and HF-guided CA. It proves that explic-
itly separating high-frequency components bolsters the diffusion model’s focus on
generating high-frequency details. Additionally, the HF-ResDiff model, equipped
with the Dose Control module, demonstrates superior performance in scenarios
of dose variation (e.g., when DRF is 10 and 2), validating the effectiveness of the
Dose Control module. These observations collectively affirm the efficacy of the
strategies implemented in our HF-ResDiff, each contributing positively to PET
reconstruction.

4 Conclusion

In this study, we propose an innovative multi-dose universal PET reconstruction
method to reduce radiation risks associated with PET imaging. We present the
High-Frequency-guided Residual Diffusion Model (HF-ResDiff), which enhances
traditional diffusion models through a series of targeted augmentations. First,
it employs a pre-trained CNN to predict low-frequency components, thereby re-
ducing computational burden on the diffusion model. Moreover, it leverages spe-
cialized frequency-domain processing approaches, namely the FD-Info Separator
and HF-guided CA, to sharpen the model’s focus on the intricate high-frequency
details in PET images. Last, a Dose Control module is integrated, utilizing spe-
cific dose-derived embeddings to inform and guide the reconstruction process.



HF-ResDiff for Multi-dose PET Reconstruction 9

Extensive experiments on public datasets have demonstrated that our method
outperforms existing state-of-the-art techniques, in both quantitative measure-
ments and qualitative assessments.
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