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Abstract. Existing landmark detection methods are primarily designed
for centralized learning scenarios where all training data and labels are
complete and available throughout the entire training phase. In real-
world scenarios, training data may be collected sequentially, covering
only part of the region of interest or providing incomplete landmark
labels. In this work, we propose a novel continual reinforcement learn-
ing framework to tackle this complex situation in landmark detection.
To handle the increasing number of landmark targets during training,
we introduce a Q-learning network that takes both observations and
prompts as input. The prompts are stored in a buffer and utilized to
guide the prediction for each landmark, enabling our method to adapt to
the intricacies of the data collection process. We validate our approach
on two datasets: the RSNA-PBA dataset, representing scenarios with
complete images and incomplete labels, and the WB-DXA dataset, rep-
resenting situations where both images and labels are incomplete. The
results demonstrate the effectiveness of the proposed method in land-
mark detection tasks with complex data structures. The source code will
be available from https://github.com/kevinwolcano/CgCRL.

Keywords: Landmark Detection · Reinforcement Learning · Continual
Learning · Incomplete Data.

1 Introduction

Landmark detection is a foundational task in medical image analysis, provid-
ing crucial information for depicting morphological features, pre-localizing re-
gions of interest (ROIs), and facilitating downstream tasks like segmentation
and registration [11,12]. With the evolution of deep learning, automatic land-
mark detection algorithms have progressed rapidly, diminishing the reliance on
time-consuming and labor-intensive manual annotations by experts.

However, most existing landmark detection algorithms are built on the as-
sumptions of complete and centralized training data. Under such settings, all
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Fig. 1. Illustration of scenarios involving sequential incomplete data in our work. Here,
Ic (Lc) and Iinc (Linc) respectively refer to complete images (labels) and incomplete
images (labels); the dots (•) and the crosses (# ) represent known landmarks and
missing ones, respectively.

training data are available throughout the training phase, and both images and
the labels are complete. In clinical scenarios, these assumptions are often not
met due to incomplete and sequential data collection. Specifically, in real-world
clinical practice, incomplete data may arise due to researchers focusing on dif-
ferent subjects, resulting in varying ROIs in images. Additionally, the high cost
of labeling may deter annotators from tagging every label. Both result in non-
standard datasets. Many deep learning models require fixed sizes for input and
output images, making them unsuitable for handling such incomplete data. For
instance, Deep Multi-agent Q-learning (DeepMaQ) addresses multi-target land-
mark detection in incomplete images using multiple agents [2]. However, as the
number of landmarks increases, the network parameters of DeepMaQ also in-
crease. Moreover, DeepMaQ must be pre-given the number of landmarks, mak-
ing it ineffective for coping with the emergence of new targets. Sequential data
collection can lead to the problem of catastrophic forgetting in deep learning
models, where knowledge learned from old data may gradually be forgotten
when the model adapts to new data. We illustrate the problem considered in
Fig. 1. At present, there has been relevant work in response to these two chal-
lenges [3,4].However, currently, there are no works that take into account the
existence of both simultaneously.

In this work, we propose a Context-guided Continual Reinforcement Learn-
ing model (CgCRL) for landmark detection with sequential incomplete training
data. The model comprises a Context-guided Multi-target Q-learning (CgMtQ)
network and a Context Memory Replay Mechanism (CMRM). The CgMtQ net-
work utilizes a single agent to explore trajectories leading to target landmarks.
Besides the agent’s observations, a context associated with the target landmark
is input into the network as a prompt to guide the agent to perform actions.
Simultaneously, with the assistance of CMRM, we maintain a prompt library
containing representative patches for target regions during training. The col-
laborative functioning of these two components enhances the robustness of the
landmark detection model and mitigates the issue of catastrophic forgetting.
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We summarize our contributions as follows: (1) We undertake the pioneering
investigation into landmark detection using sequential and incomplete train-
ing data. (2) We introduce a novel Continual Reinforcement Learning (CRL)
framework tailored for landmark detection with sequential incomplete data. Our
framework maintains a consistent network size even when faced with a varying
and expanding number of target landmarks and effectively tackles the challenge
of catastrophic forgetting. (3) We demonstrate the effectiveness of our proposed
method through experiments conducted on two datasets.

2 Methodology

Let T = {Tk|k=1,··· ,K} be K sequential training datasets, where Tk = {(Ik,i,
Yk,i)|i∈{1,··· ,Nk}} with Ik,i and Yk,i = {y[j]k,i ∈ R2|j∈Jk

} being an image and
its corresponding landmark locations (coordinates), and Jk the index set. Note
that image Ik,i could be incomplete, covering a partial ROIs and varying by task.
Accordingly, the set of target indices Jk for the k-th task could also be a subset
of the complete index set J , i.e., Jk ⊂ J . For simplification, we refer to a fully
visible image as Ic and a partially visible one as Iinc. In the context of continual
learning, datasets {Tk} are collected sequentially, and previously collected data
may not be completely retrievable in later stages of training due to the storage
limit. The goal here is to develop a model for detecting landmarks, denoted by
Q, capable of identifying all potential landmarks in a complete image.

To tackle the complex data structure during training, we develop a context-
guided continual reinforcement learning framework. As illustrated in Fig. 2, we
propose a Context-Guided Multi-Target Q-Network (CgMtQ), which takes both
observation patches and instructional prompts as input. This approach can ac-
commodate the increasing target indexes without changing the network structure
(refer to Section 2.1 for details). Moreover, as elaborated in Section 2.2, a Con-
text Memory Replay Mechanism (CMRM) is introduced to maintain a prompt
library. As training progresses, CMRM actively updates, storing representative
patches for all emerged target indices within a limited memory space. These
patches serve as prompts to predict corresponding targets, as well as facilitate
memory replay of previous tasks, thereby mitigating knowledge forgetting.

2.1 Context-guided Multi-target Q-learning

CgMtQ utilizes a singular agent to identify all landmarks, differentiating each
landmark through the use of distinct, informative prompts. As shown in Fig. 2,
throughout the training phase, for every targeted landmark, a specific prompt is
selected from the prompt library. This prompt, alongside an observation patch,
is then input into CgMtQ to undergo reinforcement learning. This methodol-
ogy allows for the accommodation of new targets without changing the network
structure. We detail the basic elements of Reinforcement Learning in the follow-
ing.
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Fig. 2. Illustration of the Context-guided Continual Reinforcement Learning (CgCRL)
consisting of CgMtQ and CMRM.

State: The current state S is defined as S = {obs, Γ p
j }, where obs is the

current observation of the agent and Γ p
j is the pth prompt for jth target selected

from the prompt library Γ . The observation can be obtained by cropping an
image around the current location of the agent with a given length. Details
about the prompt library Γ will be given in Sec 2.2.

Action: The current action A is defined as the agent’s movement in different
directions in the image. In 2D images, it moves in four directions: up, down,
left, and right by a fixed step length, i.e., A ∈ {Mleft,Mright,Mup,Mdown}. We
also adopt a multi-scale strategy, that is, starting with a larger step length and
reducing the step length once the agent converges to the target point.

Reward: The reward R after acting A is defined as R = D(y, y[t−1]) −
D(y, y[t]), where y is the target landmark location, y[t−1] and y[t] are the agent’s
locations before and after taking action at t-th step, respectively. For the distance
measurement D, we employ the Euclidean distance. Hence, R is positive if the
agent’s distance to the target point becomes smaller after acting.

CgMtQ learns the Q-value function. Details of the network structure can be
found in the Supplementary Material. Based on the Bellman equation [5], the
loss function for training CgMtQ can be formulated as follows,

LQ (ω) =
N∑
i=1

ES,A,R,S′

(
R−Q(S,A;ω) + γmax

A′
Q(S

′
, A

′
;ω)

)2

, (1)

where S
′
and A

′
are the new state after taking the action A and the new action

taken in the new state S
′
, respectively; Q(·, ·;ω) represents the Q-value function

and γ is the discount factor.
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2.2 Context Memory Replay Mechanism

The prompt library maintained throughout training is designed to enable a single
agent to adapt to an increasing number of targets, and is also utilized for memory
replay in the context of continual learning.

Contextual Prompt The prompt library Γ is built by collecting representa-
tive patches for the target regions from the training data. Specifically, we have
Γ = {Γj |j∈J } with each Γj a sub-library of prompts for jth target, denoted by
Γj = {Γ p

j |p∈{1,··· ,Nj}}. For any given index j, we extract patches with a given
size centered on the relevant landmark from images that include it as prompts.
When new images and labels emerge, new prompts will be added to the prompt
library. Due to the memory limit, when the storage is full and new prompts
are obtained, we discard the redundant old prompts based on their distances to
the corresponding clustering centers to accommodate the new ones. During both
training and testing, the appropriate prompt Γ p

j for targeting the jth landmark
is retrieved from Γj and fed into the model to guide the prediction process. The
prompt selection method and other details will be outlined in Section 2.3.

Replay Strategy The prompt library, Γ , contains representative exemplars
for previously emerged targets and thus can be utilized to avoid knowledge-
forgetting with memory replay strategy [13]. Specifically, during the training
phase for a given task Tk, if annotations for the jth landmark are absent, i.e.,
j /∈ Jk, it is possible that the landmark may either be present within or absent
from the image Ik. These situations are addressed differently: (1) If the image Ik
contains the landmark, the model, CgMtQ, generates predictions for the land-
mark’s location using each exemplar Γ p

j within Γj for p ∈ {1, · · · ,Nj}, upon a
pseudo-prompt patch, denoted Γ p̂

j , is extracted from Ik. We then calculate the
prediction confidence P as follows:

P = max
p

S(Γ p̂
j , Γ

p
j ), (2)

where S represents a measure of image similarity, with Peak Signal-to-Noise
Ratio (PSNR) utilized in this work. If P is larger than a predefined threshold,
the corresponding prediction is considered reliable and added into Γj . (2) If the
jth landmark locates outside of Ik, a random prompt Γ i

j is selected from Γj and
embedded into Ik at a random coordinate y′ to generate an augmented image
Inewk . Then, the new image-label pair {Inewk , y′} will be added to the current
training set, as shown in Fig. 2. This approach not only enriches the training
data with diverse examples but also fortifies the model’s ability to recall and
apply previously acquired knowledge to new tasks.

2.3 Implementation Details

Training Stage During the training process with CgMtQ, the initial step in-
volves choosing an appropriate prompt for every target landmark. A suitable
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representative prompt for the target’s current image context is important for
effective learning of the knowledge. Hence, similar to Eq. (2), the prompts in the
prompt library will be compared with the cropped area centered at the target
location, and the one with the highest similarity will be selected. Then, the agent
will start with a random position and act under the guidance of the network until
it reaches the terminal state. Subsequently, the agent resets its state and begins
to search for the next target landmark. In addition, we employ several techniques
to expedite network convergence, including the ϵ-greedy algorithm, parameter
replay, frozen networks, and multi-scale strategy. Please refer to Algorithm 1
showing the pseudocode in the Supplementary Material for more details.

Testing Stage During the testing phase, for each landmark index j, CgMtQ
generates predictions using all prompts from Γj , resulting in multiple potential
landmark predictions. Similar to the patch selection strategy in Eq. (2), we select
the prediction exhibiting the highest similarity as the final output. Please refer
to the Supplementary Material for more details of the testing algorithm.

3 Experiment

The proposed CgCRL was tested across various scenarios using two distinct
datasets: the RSNA Pediatric Bone Age Challenge (2017) dataset (referred to as
RSNA-PBA) [15] and the whole-body dual-energy X-ray absorptiometry dataset
(referred to as WB-DXA) [8,14], as depicted in Fig.1.

3.1 Dataset

(1) RSNA-PBA comprises 150 X-ray images of children’s hands, each down-
sampled to a resolution of 1319×1664 pixels. Expert annotations highlighted
17 keypoints at the joints in each image, as illustrated in Fig. 1 (a). To create
a sequentially labeled dataset that mimics incomplete labeling, we divided the
dataset into 6 subsets, each with 20 images for training and the remaining 30
images for validation. Each of the 6 training subsets was assigned labels for a
distinct set of 3, 3, 3, 3, 3 and 2 landmarks, covering all 17 target points. This
setup resulted in six distinct sub-tasks characterized by partial labels. The eval-
uation of the methodologies was conducted on these sub-tasks, utilizing datasets
with complete images (Ic) and incomplete labels (Linc).
(2) WB-DXA consists of 99 DXA original images, each annotated with 40
key contour points as illustrated in Fig. 1 (b). This dataset was split into four
parts: three training subsets each containing 20 images, and a fourth testing sub-
set with the remaining 39 images. Our evaluation focused on scenarios featuring
both incomplete images (Iinc) and incomplete labels (Linc). To create conditions
representing partial image availability, the images in the three training subsets
underwent vertical cropping to exclude a predetermined portion, set at a miss-
ing proportion (mp) of 40%. Specifically, for the first subtask, we preserved the
upper 40% of each image; for the second, the central 40%; and for the third,
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Table 1. Comparative results of CgMtQ with different settings on RSNA-PBA dataset.
Noted that ResNet and DensNet were trained with complete labels. ADE Values are
reported here in mm.

Training: Ic + Linc(sequential) Target: Ic → Lc

Training
Test

Iinc

IcT1 T2 T3 T4 T5 T6

CgMtQ+CMRM
(CgCRL)

T1 2.16±4.57 N/A N/A N/A N/A N/A N/A
T2 1.97± 3.24 1.24±1.94 N/A N/A N/A N/A N/A
T3 2.16± 3.65 1.60±2.38 0.95±0.717 N/A N/A N/A N/A
T4 2.53±4.62 0.92±0.964 1.82±3.09 1.91±4.41 N/A N/A N/A
T5 1.43±0.881 2.67±5.74 1.51±2.34 4.93±8.74 2.11±4.97 N/A N/A
T6 3.64±7.05 2.52±4.43 1.22±1.25 1.41±1.78 2.25±3.47 1.87±1.18 2.17±2.11

CgMtQ T6 88.8±7.96 103±10.9 6 113±12.6 117±12.8 71.7±8.36 1.29±0.79 87.2±8.28
CgMtQ+EWC T6 91.7±9.09 98.9±7.45 110 ±9.14 113±11.7 72.7±8.29 1.39±1.36 86.0±6.87
CgMtQ+GPM T6 87.5±7.73 108±7.64 108±8.05 112±11.4 71.3±8.03 1.26±0.41 84.9±6.46

Training: Ic + Linc(centralized) Target: Ic → Lc

CgMtQ 2.42±4.31 1.76±2.99 1.45±2.30 1.78±4.43 1.40±1.35 1.82±1.88 1.77±1.68
DeepMaQ 3.68±7.31 0.73±0.34 0.69±0.22 2.15±5.89 0.965±0.37 1.28±0.69 1.60±1.62
ResNet(Lc) 6.03±3.78 5.24±2.66 5.37±2.46 6.47±2.99 6.34±2.96 6.25±3.03 5.93±2.08
DensNet(Lc) 5.49±3.62 4.14±2.13 3.80±2.06 5.55±3.33 4.99±2.92 4.68±2.95 4.78±2.05

the lower 40%. Note that in the testing phase of each sub-task within the con-
tinual learning process, the testing images were similarly cropped to match the
respective training sub-task.

3.2 Experiment Results

The RSNA-PBA dataset was used to test our approach under conditions where
images were fully available but labels were partially available in a sequential
manner. Conversely, the WB-DXA dataset was chosen to assess performance in
a more challenging scenario where both images and labels were partially avail-
able. To benchmark our method, experiments were also performed with datasets
compiled in a centralized fashion, meaning all training data for the various sub-
tasks were accessible at the same time.

For comparative analysis, we selected our proposed method, CgMtQ, along-
side DeepMaQ [2], a ResNet-based keypoint detection technique for evaluation.
Furthermore, to establish baseline performances, DeepMaQ was trained with
fully complete images and labels utilizing both ResNet [10] and DenseNet ar-
chitectures, with their outcomes serving as reference points for comparison. To
measure prediction accuracy, Average Distance Error (ADE) was employed.

Results on RSNA-PBA dataset Table 1 summarizes reveals that the pro-
posed CgCRL method delivers impressive outcomes on the hand dataset within
a context of sequential incomplete data, which obtained an average error of 2.17
mm across all landmarks in the test dataset. This performance was on par with
the centralized training outcomes of CgMtQ (1.77 mm) and DeepMaQ (1.60
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Table 2. Comparative results of CgCRL with different settings on WB-DXA dataset,
ADE values are reported here in mm. Noted CgMtQ and DeepMaQ need an artificial
initial position when testing in Ic.

Training: Iinc + Linc(sequential) Target: Ic → Lc

Training
Test

Iinc

IcT1 T2 T3

CgMtQ+CMRM
(CgCRL)

T1 0.722±0.166 N/A N/A N/A
T2 1.71±1.26 0.500±0.182 N/A N/A
T3 2.52±2.13 1.76±0.948 1.24±0.37 2.32±2.02

CgMtQ T3 288±23.9 191±12.2 1.16±0.548 169±15.9
CgMtQ+EWC T3 154±44.2 84.9±20.6 1.20±0.401 75.8±24.5
CgMtQ+ GPM T3 252±21.3 176±19.4 1.19±0.35 153±13.7

Training: Iinc + Linc(centralized) Target: Ic → Lc

CgMtQ 0.836±0.277 0.683±0.445 0.594±0.232 0.753±0.422
DeepMaQ 0.632 ±0.378 0.732±0.392 0.549±0.232 0.679±0.328

ResNet(Ic, Lc) N/A N/A N/A 2.13±0.823
DensNet(Ic, Lc) N/A N/A N/A 1.83±0.912

mm), and it outperformed the centralized training results of both ResNet and
DenseNet, which were trained with fully complete labels.

When integrating GPM and EWC, CgMtQ almost fails to keep the knowledge
learning from T1 to T5, which causes large ADE and most of the predictions to
be abnormal predictions (predictions far from the true landmark). Details can be
seen in Supplementary Material. This demonstrated the ineffectiveness of both
EWC and GPM in preventing knowledge forgetting in our setting. The sequential
setting results for CgMtQ exhibited significant forgetting, which demonstrated
the effectiveness of CMRM in defying forgetting.Notably, for task T4, CgCRL
recorded a lower error after the training of all tasks compared to post T4 com-
pletion. This suggests that CgCRL not only addresses catastrophic forgetting
effectively but also leverages new data to enhance the optimization of contex-
tual cues further.

Results on the WB-DXA dataset Table 2 shows that CgCRL achieved
satisfactory results in the full-body dataset. In the context of continual learning
with incomplete data, CgMtQ achieved an ADE of 2.32 cm on complete test
images. Unlike the hand dataset, the performance on old subtasks progressively
deteriorated during the training process. For example, for subtask T1, the initial
ADE of CgMtQ was 0.722 cm. When the data of all sub-tasks were available,
CgMtQ achieved an ADE of 0.753 cm, slightly larger than DeepMaQ’s 0.679
cm. For multi-object detection problems involving incomplete images, DeepMaQ
was a better solution than CgMtQ. The reason could be that the context from
incomplete images may differ from that of complete images due to cropping,
which could disrupt guidance.

In contrast, ResNet achieved a prediction of 2.13 cm using complete data.
Additionally, the ADE value of CgMtQ was 0.19 cm lower than that in the case
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of learning with incomplete data, indicating that incomplete acquisition poses
a more challenging training scenario for CgMtQ. When integrating GPM and
EWC, CgMtQ also fails to keep memory learnt from tasks before while CMRM
successes. This suggests that CgCRL can also deal with catastrophic forgetting
when both images and labels are incomplete.

4 Conclusion

In this study, we introduce a novel reinforcement learning model for landmark
detection in scenarios involving sequential and incomplete data. The proposed
method enables the learning of an increasing number of landmarks during train-
ing by utilizing representative prompts selected from the prompt library, which is
maintained during training. We validate the proposed method on two datasets,
including the RSNA-PBA dataset for the scenario with complete images and
incomplete labels, and the WB-DXA dataset for the scenario where both images
and labels are incomplete. The results demonstrate the effectiveness of CgCRL
in landmark detection with complex data structures.
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