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Abstract. Federated learning is one popular paradigm to train a joint
model in a distributed, privacy-preserving environment. But partial an-
notations pose an obstacle meaning that categories of labels are hetero-
geneous over clients. We propose to learn a joint backbone in a federated
manner, while each site receives its own multi-label segmentation head.
By using Bayesian techniques we observe that the di↵erent segmentation
heads although only trained on the individual client’s labels also learn
information about the other labels not present at the respective site.
This information is encoded in their predictive uncertainty. To obtain a
final prediction we leverage this uncertainty and perform a weighted av-
eraging of the ensemble of distributed segmentation heads, which allows
us to segment ”locally unknown” structures. With our method, which
we refer to as FUNAvg, we are even on-par with the models trained and
tested on the same dataset on average. The code is publicly available1.

Keywords: Federated Learning · Bayesian Neural Networks · Partial
Labels.

1 Introduction

The ability of deep neural networks to accurately segment anatomical structures
promises precise quantitative analysis and clinical diagnosis, and has the poten-
tial to significantly improve medical decision making [24]. However, due to the
required e↵ort for accurately labelling medical images every institution only cre-
ates annotations for their particular research endeavour [22]. Despite being from

? These authors contributed equally.
1 https://github.com/Cardio-AI/FUNAvg
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Fig. 1: Our proposed training and inference scheme. During training each site
optimizes its own segmentation head according to the number of present labels
at the respective site. On the central server only the backbone is averaged in
a federated fashion. During inference all segmentation heads are gathered and
an average of the softmax probabilities is computed weighted by the number of
sites the individual label was present. By utilizing the predictive uncertainty of
the classifiers with FUNAvg the predictions can be improved, which is especially
benefitial for underrepresented labels across the federated sites.

the same modality and capturing a joint field of view, the cumulative informa-
tion is hardly exploited. This leads to partially annotated, distributed datasets
in a sense that some structures might be segmented in one dataset (e.g. liver,
kidney) and other structures in the other dataset (e.g., spleen, spine) that can
not be gathered on a central server because of privacy constraints.

The standard workflow includes training a model on dataset A that has the
structure of interest annotated and applying it to dataset B, which due to do-
main gaps leads to subpar performance. Recently, self-supervised methods have
gained attention which use an unsupervised pre-training on a large corpus of
data similar to dataset B, where the model is usually trained to minimize a
reconstruction loss [7]. Federated Learning (FL) is one renowned method that
reverts the common paradigm of central data storage to circumvent privacy
constraints [20]. In FL the model is sent to each data holding institution and
subsequently averaged on a central server during model training. Our method
combines both approaches by jointly learning all annotated structures across a
multitude of datasets while showing that not-annotated information in the data
is learned as well and therefore can be explored for improving predictions during
inference similar to self-supervised methods. The approach most related to ours,
MultiTalent [24], also employs training multiple segmentation heads across dif-
ferent datasets but discards the possible information learned from not-annotated
structures, partly because they do not employ a Bayesian approach [24].
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(a)
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Fig. 2: Proposed federated uncertainty weighted averaging for (a) one pixel and
(b) an entire image. (a) When averaging the softmax probabilities of sites 1-3
the final prediction would be ”Background” (Bg). By reweighting the probability
for background by the uncertainty (U) we obtain the right label of ”Spleen” in
this example. (b) After averaging the logits the final prediction ŷ is fragmentary
especially in the area of the lung in above example, while the lung is perfectly
visible in the uncertainty estimation û. We therefore multiply the background
channel with the inverse of the uncertainty ŷb ⇥ (1� û) to obtain ŷu.

We train one model in a federated setting across several partially labelled
clients, which have di↵erent number of pre-segmented images and structures
as well as annotation protocols. Our method trains a backbone in a federated
manner across all clients, while each client obtains a separate segmentation head.
The final prediction is then obtained by averaging in an ensemble-like manner.
Suprisingly, also those structures are represented in the uncertainty maps for
models trained at sites where the corresponding labels were not available. We
show that this uncertainty can be leveraged to segment previously unknown
structures at this location to improve performance especially for structures that
are underrepresented in the training sets i.e. are only present at one or few
clients.

2 Related Work

Learning from Partially Annotated Datasets. Lately, there has been an increasing
amount of studies focusing on multi-organ segmentation using data that is par-
tially labeled. One line of research leverages the inherent homogeneous anatomy
of the human body in terms of shape, size, and locations of anatomical struc-
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Fig. 3: Datasets used for training and testing and their respective label dis-
tribution. They di↵er in general quantity of training samples as well as num-
ber of annotated labels present. We used the following open data: Liver
Tumor Segmentation (LiTS) [1], Beyond the Cranial Vault (BCV, Cervix
and Abdomen) [15], Combined Healthy Abdominal Organ (CHAOS) [11],
Learn2Reg [27], AbdomenCT-1k [19], Abdominal Multi-Organ Benchmark
(AMOS) [9], and TotalSegmentator [25], and two in-house datasets termed Vis-
ceralGC and SC.

tures [21,28]. In another approach, the network is equipped with di↵erent en-
coders for each dataset in the learning procedure [26]. But this method falls short
to account for di↵erent combinations of the various organs across all datasets
present in the model training. Similar to equipping the model with di↵erent
encoders multiple heads that share a custom backbone can be used [4]. In the
approach most similar to ours called MultiTalent the network is equipped with
di↵erent segmentation heads for each datasets in the learning procedure [24]. It is
argued that this is largely needed due to di↵erent annotation protocols across the
di↵erent datasets. However, this fails at leveraging unannotated organs across
di↵erent datasets that enhances predictive quality due to larger amount of data
samples. Further, we believe that varying annotation protocols represent some
form of data dependent i.e. aleatoric uncertainty that can be captured with
Bayesian techniques [5,12,13]. MultiTalent does not exploit ways of obtaining a
final prediction by e.g. averaging of the trained segmentation heads [24].

Bayesian Federated Learning. In contrast to the point estimate used in frequen-
tist deep learning, the Bayesian approach models the parameters with a distri-
bution. Mathematically a prior distribution p(✓|↵) is placed over the weights
✓ of a neural network, governed by a hyperparameter ↵. Our interest lies in
the posterior after observing some data D p(✓|D,↵) = p(D|✓,↵)p(✓|↵)/p(D).
Unfortunately, this distribution is not tractable, but can be approximated with
Bayesian inference techniques such as variational inference (VI).

In federated learning, numerous clients collaboratively train a unified global
model, while adhering to data privacy as no data is shared with a central server
managing the training process called federated averaging (FedAvg) [20]. For a
given set of clients, let Di = {(xi,yi

)}, represent the data of client i and ✓ the
weights of the global model. At the beginning of each training round the model
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weights ✓i of every client are initialized with the latest global model weights.
Subsequently, each client performs stochastic gradient descent. After receiving
the trained models from each client, FedAvg updates the global model by aver-
aging the weights. This averaging is performed in proportion to the amount of
data each client contributes, ensuring that clients with more data have a corre-
spondingly greater influence on the final model ✓  

P
i

|ni|
n

✓i. The final model
results from the iterative application of the two previously described equations.

The standard approach of federated averaging has been refined for frequen-
tist model training in mutiple works (e.g., [10,17]). A Bayesian model capable of
predicting uncertainty can be obtained by training in the frequentist manner on
each client and subsequently by treating each client model as a sample from the
posterior [2,18,23]. As FL includes a set of candidate client models it naturally
lends itself towards model ensembling which is used in FedBE [3]. While espe-
cially model ensembles have received significant attention in the community the
usage of full Bayesian neural networks with variational inference in the federated
setting has been rarely explored.

3 Methods

Uncertainty. To reduce computational load we opt for the practical Bayesian
technique of Monte Carlo (MC) dropout [5]. Using dropout during training and
testing has been shown to approximate the true posterior, while not introducing
more computational load to capture uncertainty. Uncertainty is divided into
aleatoric (data dependent) and epistemic (model dependent) uncertainty. We
follow [14] and define uncertainty as

U =
1

T

 
TX

t=1

diag(p̂t)� p̂⌦2

!

| {z }
aleatoric

+
1

T

TX

t=1

(p̂t � p)⌦2

| {z }
epistemic

, (1)

where T is the number of MC sampling steps, ⌦ denotes the outer product, f
the network with parameters ✓̂t in step t for input x⇤, p = 1/T

P
T

t=1 p̂t and

p̂t = p(✓̂t) = Softmax{f ✓̂t(x⇤)}. The first part captures the inherent variability
in the data that cannot be reduced even if more data were to be collected, while
the second term captures the variance in the model’s output that can potentially
be reduced with more data.

Neural networks tend to produce overconfident predictions, meaning the pre-
dictive uncertainty is smaller than the predictive error, this is also known as
miscalibration [16] and can be expressed with

Ep̂ [|P (ŷ = y|p̂ = q)� q|] , 8q 2 [0, 1] , (2)

which quantifys the expectation of the di↵erence between predicted softmax like-
lihood p̂ and accuracy and can be approximated by the Expected Calibration
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Error (ECE) [6]. The predicted probabilities from a neural network are parti-
tioned into M bins and a weighted average of the di↵erence between accuracy
and confidence (i.e. softmax likelihood) is taken:

ECE =
MX

m=1

|Bm|
n

|acc(Bm)� conf(Bm)| , (3)

with total number of inputs n and set of indices Bm whose confidences fall into
that particular bin. Intuitively for all pixels that are predicted with a softmax
likelihood of 0.2 the expected accuracy should equal 20 percent [16].

Uncertainty Weighted Averaging. For training a model across partially labelled
clients each client’s model gains a separate segmentation head i.e. the last layer.
The backbone of the model until the last layer is trained in a federated fash-
ion. This enables us to learn each client’s labels while simultaneously perform
feature extraction across all tasks similar to [24]. To obtain the final predic-
tion we average the predictions from all classifiers per channel and divide each
channel by the number of clients possessing annotations of that particular label
p = 1

k

P
K

k=1 p̂k with k = [k1, k2, ...] 2 RK the number of clients that partic-
ular label was present and p̂k 2 Rki⇥H⇥W the predicted per-channel softmax
probability of each segmentation head.

Surprisingly, we noticed that although all classifiers are not aware of at least
two labels present only at other clients, these unannotated structures in their
local dataset were visible in the classifier’s predictive uncertainty (see Fig. 5).
The segmentation heads seem to have learned that there might be a structure
but did not have the ability to assign a specific label to it due to predefined
channels. We interpret the uncertainty as the probability of ”something” being
present, while the background represents the probability for ”nothing”. Conse-
quently, we reduce the likelihood for a pixel being background by the probability
of the presence of a structure encoded in the uncertainty. In areas where u is
large, the probability for a structure being present is high. We thus multiply
the background channel (the first channel 0) with the inverse of the uncertainty
p0 = (1 � u)p0. Fig. 2 shows a graphical explanation of the proposed aver-
aging procedure for one specific pixel and for the whole image. Our approach
represents a self-supervised method for reweighting the predictive probability
by the self-supervised learned un-annotated structures for each segmentation
head, while still obtaining an unambiguous prediction due to the preservation
of probabilities. To ensure the probabilities for each pixel sum to one we must
adjust the MultiTalent pipeline to be trained with cross entropy followed by a
softmax. This enables us for each pixel to have the softmax probability of ”some-
thing” compared to the probability to ”nothing” that sums to one. We control
for calibration of our probabilities in terms of ECE.

Data and Model Architecture. In total we used 8 datasets for training compris-
ing a total of 2413 3D images across 12 unique classes and 2 datasets for testing
with 240 samples. The training datasets are further split 80/20% for training
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Table 1: Comparison of DICE scores of trained models on unseen 20% test splits
and completely unseen sites. For comparison we train a model on one dataset
only and evaluated on the same and all others respectively (row 1 and 2). Further
we compare our federated trained version to the centralized case (Fed Avg and
Cen Avg). For both we also use uncertainty weighted averaging (FUNAvg and
CUNAvg). M denotes the row-wise mean. We applied a Wilcoxon signed-rank
test for each dataset between vanilla and uncertainty weighted averaging.

Method VSC LiTS Abd Cvx Chao A1k L2R TS VGC Amo M

Same 76.92 95.21 85.83 85.87 97.68 90.02 74.36 82.29 78.84 80.86 84.79
Others 63.76 41.63 64.10 42.54 37.11 37.06 27.81 67.14 57.09 58.88 49.71

Cen Avg 77.52 91.24 84.56 85.05 95.41 82.98 87.95 69.65 87.44 55.57 81.74
CUNAvg 74.51 87.95 82.39 80.4 92.86 80.16 85.91 69.07 83.18 57.60 79.40

< 0.01 < 0.01 0.02 0.07 0.03 0.01 0.41 0.35 < 0.01 0.63 < 0.01

Fed Avg 77.67 92.51 84.22 78.25 91.92 87.73 85.11 77.94 85.12 65.94 82.64
FUNAvg 77.26 93.06 86.87 78.88 94.63 86.63 86.35 85.19 85.31 73.49 84.77

0.04 0.45 0.01 0.89 0.19 0.54 0.78 0.03 0.8 < 0.01 0.07

and testing. Each dataset represents one client in the federation. We chose our
test set such that no client is in possession of all labels and that each label is
at least present once in both test- and training sets. A notable characteristic of
these datasets is their diversity in field of view, contrast and noise (see Fig. 6 in
the appendix). This variation not only mirrors the real-world scenarios encoun-
tered in medical imaging but also challenges and validates the robustness of our
model in handling diverse imaging conditions and patient-specific variations. In
Fig. 3 we show all labels present in the datasets and their respective distribution
across the federation. Preprocessing and training was done using the nnUNet
framework [8] as in [24] with the above mentioned adaptations.

4 Results

We performed an 80-20% train-test split at each client. For a baseline, we trained
models on single clients (no FL) and evaluated them in the intra-client scenario
on the same client (row 1 in Tab. 1) and inter-client scenario on the test split of
all other clients where the target label was available (row 2 in Tab. 1). We then
performed training similar to MultiTalent [24], where each dataset obtained a
separate segmentation head. We performed vanilla averaging and uncertainty
weighted averaging for the centralized (Cen Avg and CUNAvg, rows 3 and 4)
and federated setting (Fed Avg and FUNAvg, rows 5 and 6).

Despite the challenges of di↵erent quantities of annotated labels, CT scans,
and fields of view, federated training was successful for all structures present
at any client. Our method (DICE=84.77) is on par with the models trained
and evaluated on the same dataset (84.79) and outperforms the centralized set-
ting (81.74) when uncertainty is utilized to enhance predictions. This improve-
ment is especially high in scenarios with limited data, such as Learn2Reg [27],
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(a) (b)

Fig. 4: Calibration of the di↵erent methods in terms of Expected Calibration
Error (a) and performance gain of FUNAvg in comparison to vanilla averaging
the di↵erent logits from the federated training segmentation heads (b).

Fig. 5: Qualitative results on the AMOS test set. The classifier trained on the
BCV Cervix dataset does not predict any of the labels present in the ground
truth. Still, it learns their presence in the uncertainty.

where overfitting occurs in the non-federated case (86.35 vs. 74.36). The mod-
els trained on one dataset generally performed poorly when applied to other
datasets (49.71). In the centralized case, the predictions could not be enhanced
by performing uncertainty weighted averaging (81.74 vs. 79.40). This could be
explained by a worse calibration of the central trained model in terms of ECE
(12.42 vs. 16.54, see Fig. 4).

5 Discussion

The information for segmenting all structures across the datasets is encoded in
the (federated trained) backbone. Unable to assign a previously unseen label in
its fixed number of channels, the segmentation head only learns the presence of
some structures encoded in the uncertainty, without being explicitly trained for
it. For example, Fig.5 illustrates how a network with a head trained on the BCV
Cervix[15] dataset can segment organs well in the uncertainty when applied to
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the AMOS [9] dataset, which contains none of the labels used for training. In fed-
erated learning, the segmentation heads with non-overlapping labels may use the
same feature maps from the backbone, whereas in the centralized case, the heads
tend to use di↵erent feature maps. The improvement of our proposed FUNAvg
is larger for underrepresented labels (see Fig. 4 and Tab. 2 in the Appendix).
We believe that predictions for these structures are encoded in the uncertainties
of the other clients, whereas for labels present at many sites, predictions are
already encoded in the output. For these labels, our proposed method may lead
to slightly worse results. Future work could explore whether uncertainty can be
used more targeted during averaging in such cases.
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