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Abstract. Early diagnosis of colorectal cancer (CRC) is crucial for im-
proving survival and quality of life. While computed tomography (CT) is
a key diagnostic tool, manually screening colon tumors is time-consuming
and repetitive for radiologists. Recently, deep learning has shown promise
in medical image analysis, but its clinical application is limited by the
model’s unexplainability and the need for a large number of finely an-
notated samples. In this paper, we propose a loose lesion location self-
supervision enhanced CRC diagnosis framework to reduce the require-
ment of fine sample annotations and improve the reliability of prediction
results. For both non-contrast and contrast CT, despite potential devia-
tions in imaging positions, the lesion location should be nearly consistent
in images of both modalities at the same sequence position. In addition,
lesion location in two successive slices is relatively close for the same
modality. Therefore, a self-supervision mechanism is devised to enforce
lesion location consistency at both temporal and modality levels of CT,
reducing the need for fine annotations and enhancing the interpretabil-
ity of diagnostics. Furthermore, this paper introduces a mask correction
loopback strategy to reinforce the interdependence between category la-
bel and lesion location, ensuring the reliability of diagnosis. To verify our
method’s effectiveness, we collect data from 3,178 CRC patients and 887
healthy controls. Experiment results show that the proposed method not
only provides reliable lesion localization but also enhances the classifica-
tion performance by 1-2%, offering an effective diagnostic tool for CRC.
Code is available at https://github.com/Gaotianhong/LooseLocationSS.

Keywords: Colorectal cancer · Computed tomography · Loose location
self-supervision · Mask correction loopback · Reliability.

1 Introduction

Colorectal cancer (CRC), accounting for about 10% of all cancer cases, is the
third most common cancer and the second leading cause of cancer-related deaths

https://github.com/Gaotianhong/LooseLocationSS
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globally [22]. In modern medical diagnostics, computer tomography (CT) has
become an important means for CRC screening due to its high resolution and
non-invasive characteristics [2,21]. However, traditional CT image analysis relies
on manual screening by radiologists, which is time-consuming, labor-intensive
and subjective. Therefore, automated medical image analysis methods such as
deep learning technology have become a research hotspot, aiming to improve the
efficiency and accuracy of diagnosis [3,17,15,30].

Inspired by the successful application of deep learning, several works adopted
neural network to diagnose CRC in CT images [25,8,19,28,1,29,6], primarily fo-
cusing on classification, detection and segmentation. The classification meth-
ods [25,8] trained 3D CNN to determine the presence of CRC in CT scans.In
lesion detection, Sahoo et al. [19] used RetinaNet [13] and YOLO [24] to lo-
calize lesion in CT images. Yao et al. [28] developed a deep learning model for
detection of CRC and compared it with radiologists. In lesion segmentation,
Akilandeswari et al. [1] adopted ResNet-enabled CNN [7] to achieve complete
boundary segmentation of the colon cancer region. Yao et al. [29] proposed a
topology-aware approach for automated colorectum and CRC segmentation in
routine abdominal CT scans. Han et al. [6] customized 3D U-Net of nnU-Net [10]
to simultaneously detect and segment lesion.

Although the CRC classification method does not require fine labeling, the
black-box nature of deep learning models lead to insufficient explanation. While
detection and segmentation methods provide a degree of interpretability, the
need for extensive labeling restricts the clinical application of deep learning.

In this paper, we propose a loose lesion location self-supervision and devise
a lesion location mask correction loopback mechanism, which not only reduces
the need for fine annotations, but also provides a diagnostic basis and improves
the interpretability of model. The overall framework is shown in Fig. 1. Con-
sidering the spatial continuity of lesion location across successive slices in the
same modality, we adopt the temporal consistency constraint. For non-contrast
and contrast CT, despite potential deviations in imaging positions, images from
both modalities at the same sequence position should display roughly same lesion
area, leading to the adoption of modality consistency constraint. Furthermore,
through lesion location loopback, the patch identified as lesion is mapped back to
the original CT image and masked, and then sent to the classification branch to
establish a strong dependence between classification results and lesion location,
ensuring the reliability of CRC diagnosis.

A colorectal CT scanning dataset was collected from 3,178 CRC patients and
887 healthy controls. Each sample contains both non-contrast and contrast CT
with continuous image sequences in each modality. Experiment results show that
our method requires only 8.3% fine annotations to achieve localization perfor-
mance comparable to fully supervised methods, enhances diagnostic accuracy
and provides reliable lesion location, thus offering an effective diagnostic tool.

Our main contribution can be summarized as follows: 1) We propose a
loose lesion location self-supervision mechanism by constraining the temporal
and cross-modal misalignment of lesion locations, which achieves accurate le-
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Fig. 1. The framework of loose lesion location self-supervision enhanced CRC diagno-
sis, which is composed of image classification branch Fb ◦ Fc and patch classification
branch Fb ◦ Fpc. The image classification branch enables the model to distinguish be-
tween CRC and healthy samples. The patch classification branch achieves accurate
lesion localization through loose location self-supervision constraint, which reduces the
need for labeled samples and enhances interpretability. Additionally, the mask correc-
tion loopback mechanism constrains the strong dependence of classification results and
lesion location.

sion localization with minimal finely labeled data. 2) The lesion location mask
correction loopback mechanism is devised to enhance the consistency between
category label and lesion location, which improves the reliability of diagnostic
results. 3) The proposed method achieves excellent classification and localization
performance with limited annotations on the collected dataset.

2 Method

Given the limitations of fully supervised diagnostic methods, which require ex-
tensive annotations and suffer from poor interpretability, we propose a loose
lesion location self-supervision enhanced CRC diagnosis framework, illustrated
in Figure 1. By analyzing the slight misalignment consistency of lesion location,
the temporal and modality self-supervision strategy is proposed. Combined with
fuzzy classification loss function, the lesion sites are accurately located. Further-
more, mask correction loopback mechanism, which strengthens the consistency
between the predicted results and the lesion location by masking the lesion area,
increases the reliability.
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The framework is composed of an image classification branch Fb ◦ Fc and a
patch classification branch Fb ◦Fpc. The two branches share the same backbone
Fb. The Fc and Fpc denote image classification head and patch classification
head, respectively. For convenience, we denote the composite function Fb ◦Fc as
Fcls and Fb ◦ Fpc as Fpcls. The image classification branch Fcls should enable
the model to distinguish between CRC and healthy samples, so the classification
loss is defined as follows:

Lcls = LCE (p, y) , p = Fcls (I) , (1)

where I is the input image, y is the image-level label, p is the probability of
lesion, and LCE is the cross entropy (CE) loss function.

2.1 Loose Location Self-supervision Constraint

Loose Self-supervision Mechanism. To minimize the dependence on fine
labeling, we devise a loose self-supervision mechanism that provides constraint
information for accurate lesion localization. As shown in Figure 1, the lesion
location remain close across adjacent slices.By defining θx and θy as the deviation
of X and Y coordinates between adjacent lesion slices and creating a bounding
box with the maximum of them based on intermediate slice, all lesion area will
be within this box, leaving the background area healthy. Therefore, the method
provides supervision information by ensuring background consistency.

On the temporal level, considering a sequence of CRC non-contrast CT
images {Ink }

K
k=1, where Ink denotes the non-contrast CT image at position k.

Patch features extracted by Fb are processed with Fpc to produce grid patch
pnk = Fpcls (I

n
k ). Here, pn,i,jk denotes the probability of lesion for a patch in row i

and column j with i ∈ [1, h], j ∈ [1, w], and h×w is the total number of patches.
To maintain background consistency, Mn

k is utilized to mask the area within the
bounding box centered on the highest predicted lesion probability location (a, b)
in pnk . Then the temporal consistency loss is defined as follows:

Lt =

K−1∑
k=2

(
JS

(
Pn
k ∥Pn

k−1

)
+ JS

(
Pn
k ||Pn

k+1

))
, Pn

k = pnk ∗Mn
k ,

Mn,i,j
k = 1− 1(|i− a| ≤ θx and |j − b| ≤ θy), (a, b) = argmax

i,j
pn,i,jk ,

(2)

where 1(∗) is the indicator function, and Pn
k is the lesion masked grid patch

at position k. The predicted distribution differences between the intermediate
grid patch and both the previous and the latter are quantified respectively by
JS

(
Pn
k ∥Pn

k−1

)
and JS

(
Pn
k ∥Pn

k+1

)
using Jensen-Shannon divergence [12]. This

symmetric and bounded measure enhances the model’s stability and robustness.
On the modality level, similar to temporal proximity, lesion locations across

different modalities are close, leading to apply a similar loose location constraint.
Considering a CRC arterial phase CT sequence {Iak}

K
k=1 and a CRC venous phase

CT sequence {Ivk}
K
k=1 of contrast CT, we calculate the grid patch probability
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pak = Fpcls (I
a
k ) and pvk = Fpcls (I

v
k ) respectively. Thus, the modality consistency

loss is optimized by minimizing the background difference:

Lm =

K∑
k=1

(JS (Pn
k ∥P a

k ) + JS (Pn
k ||P v

k )) ,

P a
k = pak ∗Mn

k , P
v
k = pvk ∗Mn

k .

(3)

Weakly Supervised Guidance. Loose self-supervision mechanism provides
a certain degree of constraint information, yet effectively correcting initial mis-
classifications is challenging. In order to get better initial classification guidance,
we use a small number of supervised samples (less than 10% of the total) and
implement patch classification loss:

Lpatch = LCE

(
pn0, 0

)
+ LCE

(
pn1, 1

)
+ Lfuzzy

(
pn1

)
, (4)

where pn0 and pn1 are the grid patch prediction probability of healthy and
CRC samples in non-contrast CT, respectively. LCE is employed for optimizing
few labeled CRC and healthy samples. Lfuzzy is the fuzzy classification loss [5]
and used for unlabeled CRC samples. Therefore, location constraint significantly
improves the accurate localization of lesion with weak supervision guidance.

Generally, the loose location self-supervision includes temporal consistency
Lt, modality consistency Lm and patch weakly supervised guidance Lpatch:

Lcon = Lt + Lm + Lpatch. (5)

2.2 Mask Correction Loopback Mechanism

Further, a lesion location mask correction loopback mechanism is devised to
enhance the reliability of the prediction results, which constrains the strong
dependence between category label and lesion location.

Specifically, we upsample lesion masked grid patch Pn of the non-contrast CT
image In to match the input size and use it to mask image. The lesion masked
image is then input back into the classification branch, and it is expected to be
classified as healthy. So the loopback consistency loss is defined as follows:

Lloop = LCE (Fcls (I
n ∗ U (Pn)) , 0) , (6)

where U (pn) is a mapping function that upsamples Pn. In ∗ U (pn) represents
the lesion masked image. The above loss function is only for CRC samples.

The loopback consistency loss continuously optimizes the model by masking
the lesion location and binds localization and overall classification results to
strengthen the consistency and increase the reliability of the model.

2.3 Complete Framework

The combination of loose lesion location self-supervision and fuzzy classifica-
tion loss allows accurate lesion localization without extensive fine labeling. The
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Table 1. Slice-level classification and localization performance. ‘P-pre.’, ‘P-rec.’ and
‘P-IoU’ denote patch precision, patch recall, and patch IoU, respectively.

Method Classification Localization

AccuracyPrecision Recall SpecificityF1-score P-pre. P-rec. P-IoU

Unsupervised GradCAM [20] / 47.70% 62.58% 37.12%
EigenCAM [16] / 58.54% 78.67% 50.42%

Fully supervised

Sahoo [19] 89.36% 81.19% 84.17% 91.60% 82.65% 69.34% 86. 41% 62.52%
ResNet50 [7] 88.53% 78.60% 85.08% 90.02% 81.71% 61.07% 88.52% 56.59%

MobileNetV3-L [9] 87.86% 78.73% 81.75% 90.49% 80.21% 62.15% 87.77% 57.20%
RegNetY-128G [18] 89.16% 79.45% 86.33% 90.38% 82.75% 61.11% 81.06% 53.48%

EfficientNetV2-L [23] 87.36% 74.72% 87.67% 87.22% 80.67% 67.25% 85.29% 60.26%
ConvNeXt-L [14] 90.29% 82.08% 86.67% 91.85% 84.31% 71.15% 82.10% 61.60%

ConvNeXtV2-L [27] 90.44% 83.10% 85.67% 92.50% 84.37% 65.81% 90.85% 61.72%

8.3% supervised Ours 91.19% 83.72% 87.83% 92.64% 85.73%79.19% 75.32% 62.87%

mask correction loopback mechanism constrains the strong dependence between
classification and localization, enhancing the reliability of CRC diagnosis.

We train our model in two stages. Firstly, the image classification branch
is trained by optimizing Lcls to enable the model to distinguish between CRC
and healthy samples. Secondly, Lcls, Lcon and Lloop are jointly optimized to
train both image classification branch and patch classification branch with the
following loss function:

L = αLcls + βLcon + γLloop, (7)

where α, β and γ are balance parameters.

3 Experiments and Results

3.1 Dataset

In this paper, we collect colorectal CT scan dataset from three medical centers
and each patient contains three modalities: non-contrast, arterial and venous,
of which arterial and venous are contrast CT. A total of 3,178 CRC patients
and 887 healthy controls are included. Please find the details of the dataset in
the supplementary material. In our experiment, the training set includes three
modalities data of 3,028 CRC and 737 healthy controls (75,642 lesion slices
and 64,182 healthy slices with equal number of each modality). We only use
6,304 non-contrast CT slices (8.3% of the total) with lesion location bounding
box labeling to provide supervision information. The test set consisted of non-
contrast CT scan from 150 CRC patients and 150 healthy controls (1,200 lesion
slices and 2,786 healthy slices) is used to evaluate our method’s effectiveness.

3.2 Implementation Details

The network’s backbone Fb is the ConvNeXtV2-L [27] pretrained on ImageNet [4]
provided by timm library [26], and the last global adaptive pooling layer and the
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Table 2. Patient-level classification performance.

Method Accuracy Precision Recall Specificity F1-score

Sahoo [19] 84.33% 83.67% 85.33% 83.33% 84.49%
ResNet50 [7] 84.00% 82.28% 86.67% 81.33% 84.42%

MobileNetV3-L [9] 83.33% 82.89% 84.00% 82.67% 83.44%
RegNetY-128G [18] 84.00% 82.28% 86.67% 81.33% 84.42%
EfficientNetV2 [23] 83.33% 80.49% 88.00% 78.67% 84.08%
ConvNeXt-L [14] 85.33% 84.87% 86.00% 84.67% 85.43%

ConvNeXtV2-L [27] 85.67% 85.91% 85.33% 86.00% 85.62%
Ours 87.00% 86.27% 88.00% 86.00% 87.13%

fully connected layer are removed and regarded as image classification head Fc.
We adopt a three layers convolutional network for patch classification head Fpc.
Conv2d, BatchNorm2d and ReLU are successively added in the first two layers
and the final layer is Conv2d for classifying each patch.

Initially, we only train the image classification branch for 10 epochs and then
the entire network is trained for 10 epochs with deviation θx = 1, θy = 1 and
balance parameters α = 0.5, β = 1, γ = 0.5. The default batch size is 48.
The optimizer is Adam [11], and the initial learning rate is 1e−4 with cosine
annealing scheduler for each cycle, aligned with the overall training epochs. The
size of input CT image is 224× 224 px.

We will compare our method in slice-level classification and localization, as
well as patient-level classification, with state-of-the-art (SOTA) methods.

3.3 Comparison with SOTA

Slice-level Experiment and Analysis. To validate our method, we com-
pare classification and localization performance at slice level in Table 1. Grad-
CAM [20] and EigenCAM [16] are two feature attribution methods, both uti-
lizing the ConvNeXtV2-L backbone in experiments. Sahoo [19] is YOLOv8-
based [24] detection method and supervised by fully bounding box annotations.
ResNet50 [7], MobileNetV3-L [9], RegNetY-128G [18], EfficientNetV2-L [23],
ConvNeXt-L [14] and ConvNeXtV2-L [27] are SOTA CNN-based image classi-
fication methods and we regard them as backbone, then add a location branch
using fully annotations of three modalities to train.

It is evident that our method excels in slice-level classification tasks. This is
mainly because the proposed loose location self-supervision and mask correction
loopback mechanism, enhancing the model’s ability to distinguish between CRC
and healthy samples. For lesion localization, considering that our network is not
designed for regression, direct comparison of IoU would be inappropriate. There-
fore, we assess the patch IoU instead. Specifically, the original image is divided
into grid patches, and we calculate the patch overlap rate for both predicted and
actual boxes. So patch precision (P-pre.), patch recall (P-rec.) and patch IoU
(P-IoU) are used to evaluate the localization performance. Our method achieves
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Table 3. Ablation study on different loss terms.

Index w/o Lcls w/o Lcon w/o Lloop Ours

P-pre. 61.16% 18.59% 69.45% 79.19%
P-rec. 58.18% 16.71% 65.96% 75.32%
P-IoU 42.48% 9.65% 51.13% 62.87%

the best performance in terms of P-pre. and P-IoU but not excels in P-rec. due
to lack of extensive fine labeling guidance. The results indicate that with only
8.3% annotations, our approach achieves promising results compared to feature
attribution methods and those requiring massive annotations.

Patient-level Experiment and Analysis. Table 2 shows patient-level clas-
sification performance, which employs a threshold method for diagnosis by ana-
lyzing the entire colorectal scan sequence. If more than 7 slices are classified as
lesion, it indicates CRC. Once again, our method demonstrates superior perfor-
mance. For the whole scan sequence of patients in clinical diagnosis, the model
can more effectively distinguish between lesion and healthy slices, further con-
firming our method’s robustness and reliability.

Lesion Localization Visualization. Due to the specificity of medical diagno-
sis, the reliability is essential factor of the diagnostic method. A major advantage
of our method is its ability to provide reliable predictions with minimal labeling.
The proposed method predicts the lesion area by mapping the patch with the
highest lesion probability onto the original CT image. The qualitative visual re-
sults of EigenCAM [16], ConvNeXtV2-L [27] with fully annotations (Fully) and
Ours for lesion location are given in the supplementary material.

3.4 Ablation Study

To verify the effectiveness of each component, ablation study is conducted on
three loss function terms: Lcls, Lcon, and Lloop. Table 3 gives the quantitative
evaluation of lesion localization performance, showing that all loss terms have
contributed to the final result. Notably, Lcls can maintain the discriminative
capability of model to distinguish between CRC and healthy samples and lacking
it leads to locating performance degradation. Due to the lack of the loose location
self-supervision constraint, abandoning Lcon significantly impairs the model’s
ability of accurate lesion localization. The absence of Lloop shows that the mask
correction loop mechanism further enhances model performance. Therefore, the
three terms work together to improve lesion localization performance.

4 Conclusion

In this paper, we propose loose lesion location self-supervision enhanced CRC
diagnosis, which is composed of loose location self-supervision constraint and
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mask correction loopback. Without the need for extensive lesion location label-
ing, we apply location consistency constraint to accurately localize lesion from
both temporal and modality perspectives. Masking the lesion location enhances
the consistency between category label and lesion location, ensuring reliable
diagnostic. Extensive experiments show that our method achieves accurate clas-
sification and provides reliable lesion localization, offering an effective diagnostic
tool for CRC. In the future, we will focus on the extension of self-supervision
and mask correction loopback mechanism into more general classification tasks
and applying the proposed method to auxiliary diagnosis in clinical practice.
Furthermore, we will also devote ourselves to considering additional criteria for
diseases with significant location variations to avoid erroneous constraints.
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