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Abstract. High-performance methods for automated detection of epilep-
tic stereo-electroencephalography (SEEG) have important clinical re-
search implications, improving the diagnostic efficiency and reducing
physician burden. However, few studies have been able to consider the
process of seizure propagation, thus failing to fully capture the deep rep-
resentations and variations of SEEG in the temporal, spatial, and spec-
tral domains. In this paper, we construct a novel long-term SEEG seizure
dataset (LTSZ dataset), and propose channel embedding temporal-spatial-
spectral transformer (CE-TSS-Transformer) framework. Firstly, we de-
sign channel embedding module to reduce feature dimensions and adap-
tively construct optimal representation for subsequent analysis. Secondly,
we integrate unified multi-scale temporal-spatial-spectral analysis to cap-
ture multi-level, multi-domain deep features. Finally, we utilize the trans-
former encoder to learn the global relevance of features, enhancing the
network’s ability to express SEEG features. Experimental results demon-
strate state-of-the-art detection performance on the LT'SZ dataset, achiev-
ing sensitivity, specificity, and accuracy of 99.48%, 99.80%, and 99.48%,
respectively. Furthermore, we validate the scalability of the proposed
framework on two public datasets of different signal sources, demon-
strating the power of the CE-TSS-Transformer framework for capturing
diverse temporal-spatial-spectral patterns in seizure detection. The code
is available at https://github.com/lizhuoyi-eve/CE-TSS-Transformer.
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1 Introduction

Epilepsy is a chronic neurological disorder caused by sudden abnormal discharges
of brain neurons, affecting approximately 70 million people worldwide [1,2]. As
a minimally invasive method, stereo-electroencephalography (SEEG) is widely
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used in the diagnosis and treatment of epilepsy [3]. However, current clini-
cal practice still requires physicians to visually observe and analyse long-term
SEEG signals, which is very subjective and time-consuming. Therefore, lever-
aging computer-assisted diagnoses for intelligent recognition of epileptic SEEG
signals is an effective alternative to manual seizure detection.

Many machine learning methods have been proposed [4,5,6]. For instance,
Zubair et al. [7] used discrete wavelet transform for extracting time-frequency
features and the variants of principal component analysis for dimensionality re-
duction to achieve epilepsy detection. Li et al. [8] proposed a method combining
multi-scale Radial Basis Function networks with Fisher Vector encoding for ex-
tracting EEG epilepsy features from the time-frequency domain. In recent years,
deep learning methods have also been explored [9,10,11]. Yu et al. [12] proposed
a SEEG classification method based on an epilepsy domain adversarial network,
which uses an adversarial network to learn SEEG features.

Although these methods have shown promising results, they are limited in
their ability to fully capture the complex patterns of epileptic neural activity.
Specifically, referring to their propagation process, seizures are caused by clus-
tered abnormal discharges of brain neurons, generating high-frequency, transient
spike waves, and transmitting them to different brain regions [13]. This process
produces oscillatory signals with different spectra over time, during the ictal and
interictal periods, which are transmitted to different brain spatial regions. There-
fore, multi-scale temporal, spatial, and spectral analyses of long-term epilepsy
data can provide insights into ictal and interictal state features. However, previ-
ous research has not adequately considered the propagation process of seizures,
failing to fully capture the associated neural activity variation across temporal,
spatial and spectral domains. Also, few studies have designed seizure detection
methods specific for SEEG.

To address aforementioned problems, this paper designs an interpretable
channel embedding temporal-spatial-spectral transformer (CE-TSS-Transformer)
framework for detecting seizures on a novel long-term seizure SEEG dataset. Its
main contributions are as follows:

1) A novel channel embedding (CE) module is designed to address the often
overlooked temporal patterns and randomness in the original SEEG signals. It
reduces feature dimensions and provides an adaptive optimal representation for
subsequent multi-scale analyses.

2) A multi-scale temporal-spatial-spectral (TSS) convolution network is de-
signed to comprehensively capture the specific representations of different time,
channels and SEEG rhythms in a uniform manner.

3) A TSS-Transformer network is designed to address the local sensory do-
main of convolutional neural network. The network learns the global correlation
of local features, enhancing the representation capability of SEEG signals.

4) In addition to the novel SEEG dataset, the proposed method is capable of
dealing with a variety of multi-scale temporal, spatial and spectral patterns from
other neural activity modalities, including depth electrodes, strip electrodes and
EEGs. The method is also capable of dealing with inter-patient heterogeneity.
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2 Materials and Methods

2.1 Epilepsy Datasets

LTSZ dataset. The dataset for this paper is collected from the neurosurgery de-
partment of a hospital that monitored the clinical epilepsy SEEG of five patients,
which we also refer to as the long-term SEEG seizure dataset (LTSZ dataset).
The SEEG signals of all patients are obtained using the Neruacle Digital EEG
Machine (NSH0256) with a sampling frequency of 4000 Hz. Each patient have
an individualised surgical pathway, and each SEEG have a different number of
contacts, each of which represented SEEG channel. The SEEG data are reviewed
and approved by the ethical committee of the hospital. Ictal and interictal data
are manually labelled by two physicians with extensive clinical experience. Gen-
eral information of all patients is shown in Table 1.

Table 1. General information of epileptic patients of the LTSZ dataset.

. SEEG SEEG | Seizure | Total seizure | Total
Patient ID | Gender | Age electrodes | contacts | events time(s) time(h)
01 Female | 33 9 127 146 4380 384
02 Female 5 10 132 65 10549 154
03 Female | 11 8 126 138 2438 94
04 Male 15 13 196 12 2430 237
05 Female | 10 11 142 16 1067 92

Bonn Dataset. The public dataset consists of five sets (A-E), each containing
100 segments of neural activity with length of 23.6s and frequency of 173.61
Hz. Specifically, sets C and D contain signals from depth electrodes recorded
during interictal periods of five epilepsy patients, while set E contains signals
from depth and strip electrodes recorded during ictal periods [14].

CHB-MIT Dataset. The public dataset consists of scalp EEG signals from 22
paediatric epilepsy patients at Children’s Hospital Boston. The dataset totalled
961 hours and contained 198 seizures. The EEG electrodes are placed according
to the International 10-20 system with a sampling frequency of 256 Hz [15].

2.2 Preprocessing

Preprocessing helps improve the quality of signals, making them more suitable
for subsequent epilepsy detection [16,17]. The two public datasets have already
been preprocessed [14,18]. We perform the following steps of the LTSZ dataset:

1) Downsampling: Reduce the original sampling frequency from 4000 Hz
to 1000 Hz to retain essential information while decreasing data volume and
improving computational efficiency.
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2) Bandpass and Notch Filtering: Apply bandpass filtering to the SEEG
signals within the range of 0.5-70 Hz to eliminate noise. Implement notch filtering
on the SEEG signals to remove powerline interference.

3) Normalization: Utilize z-score normalization to reduce the fluctuation and
nonstationarity of SEEG signals.

For the LTSZ, Bonn, and CHB-MIT datasets, continuous brain activity
records are pre-organized into non-overlapping 2s epoch segments before being
input into CE-TSS-Transformer.

2.3 Architecture of the CE-SST-Transformer Framework

The overview of the proposed model framework of CE-T'SS-Transformer is shown
in Fig. 1. Components of this framework is detailed in the following sections and
Fig. 2. As the inputs, the SEEG dataset are defined as D; = {(z1,y1), .-, (Tn-1
,YnN—1), (zn,yn)}, where y represents labels for ictal or interictal periods. N
represents the total number of SEEG segments. z; € REXP represents SEEG
segments with F channels and P sampling points at a sampling rate of s;. Similar
definition applies to the other two public datasets.
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Fig. 1. Architecture of the proposed CE-TSS-Transformer framework.

CE-Temporal-Spatial-Spectral Net. To construct optimal representations
for subsequent T'SS analyses, we set up a CE module. This module first embeds
the original SEEG segments of size F x 1 x T into a set of 8 x 1 x T time-series
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Fig. 2. Schematic of the multi-scale temporal-spatial-spectral analysis. (a) multi-scale
temporal-spatial analysis; (b) multi-scale spectral analysis.

representations. The first two temporal convolution layers perform convolution
and batch normalization, with a kernel size of 1 x 3, stride of 1, and padding
of 1. The dimensionality of time-series-like embedding is reduced in the final
convolutional layer and the residual module using the exponential linear unit
(ELU) and average pooling. Meanwhile, the original SEEG segments undergoes
convolution, ELU, and average pooling to retain its main features. The ‘1 x 3 x4’
and ‘1 x 3 x 8 denote dilation rates of 4 and 8, respectively, while ‘X’ in ‘1 x
3 x X’ denotes the number of SEEG contacts for different patients. Finally, the
processed SEEG input signal is concatenated with the time-series-like embedding
to create the dynamic subband matrix M € RE*™*T where C' = E + 8.

1) Multi-scale temporal analysis. Considering the non-stationary and
heterogeneity of SEEG in epilepsy patients, we proposed multi-scale temporal
to capture SEEG features across different time scales. This process is shown in
Fig. 2(a). We used six independent temporal convolution layers, each including
temporal convolution of different sensory domains, batch normalization, and
ELU to extract SEEG features. Each layer can be expressed as:

t; = ELU(BN(Conv(zcg))) (1)

where, xcg denotes the dynamic subband SEEGs. ¢; is the feature obtained
from each layer, i € {1,2,3,4,5,6}. The size of six convolution kernels is set to
{k, k, §7 %, %, % , k= 2Ulog25:]=3 Considering s,=—1000 Hz, it can be calculated
that k = 64, i.e., the size of six convolution kernels is set to {64, 64,32, 16,8,4}.

2) Multi-scale spatial analysis. Considering the spatial propagation dur-
ing seizures, we reveal the features of brain activity at different scales through
multi-scale spatial analysis. The features after multi-scale temporal analysis un-
dergoes spatial convolution along the electrode channel, retaining & convolution
kernels of size C' x 1 with a stride of 1. This layer acts as a spatial filter, learning

the features between different channels after multi-scale temporal analysis.
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3) Multi-scale spectral analysis. Multi-scale spectral analysis is helpful
for studying the dynamic changes of different frequency components during ictal
and interictal states. This process is shown in Fig. 2(b). We propose a multi-layer
wavelet convolution method to extract different SEEG rhythms. The definition
of a wavelet convolutional layer can be expressed as:

zp=2cp(N -2 +1),...,20p(N — 1)©zcr(0), (2)
N ,:ECE(N - 1)©(ECE(0), ‘e ;xCE(g - 2)

ya(t) = S0 gwp(s x i — 1) x g(r)

yp(t) = Slgap(s x i =) x h(r)
where, (¢) denotes the concatenating operation. N denotes the length of the
SEEG segments. The 1-D signal of length N from each channel in z¢g is taken
as input, resulting in x, after periodic padding. R, s denote the size of the con-
volution kernel and stride, respectively. y4(¢) and yp(t) denote the approximate
wavelet coefficients and fine wavelet coeflicients, respectively. g, h are a pair of
wavelet convolution kernels.

In order to obtain the wavelet coefficients of different SEEG rhythms, i.e. 0-4
Hz (6 rhythm), 4-8 Hz (0 rhythm), 8-12 Hz (« rhythm), 13-30 Hz (8 rhythm),
30-50 Hz (y rhythm), and >50 Hz (high v rhythm), we choose the Db4 wavelet
basis function for spectral feature extraction. The stride and kernel size of Wave-
Conv are set to 2 and 8. The number of layers of the wavelet convolution
L = 2log25:1=3 which can be calculated as L = 6.

(3)

TSS-Transformer Net. CE-TSS net concatenates the multi-scale features to
obtain six sets of hybrid features as shown in Fig. 1. We input the concatenates
features into the transformer encoder to better capture long-distance dependen-
cies and structural information, and the process can be expressed as:

QK"
VE

where, k denotes the length of the token. Matrix Q, K and V denotes the query,
key and value.

Attention(Q, K, V) = Softmaz(

)V (4)

MHA(Q,K,V) = [heady;. . .; heady 1]

5
head,, = Attention(Qn, Kn, Vi) (5)

where, M H A denotes the multi-head attention. H denotes the number of heads.
Qu, K4, V,, denotes the query, key, and value of the n-th head after linear trans-
formation.

Classification Net. The detection of epileptic seizure onset in SEEG signals
utilizes a multilayer perceptron (MLP) as a classification net. The final output
is the classification result, indicating the probability of input SEEG segments
belonging to the ictal or interictal periods.
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3 Experiments and Results

3.1 Experimental Settings

Our method is implemented based on Python 3.8.10 using PyTorch 1.8.1 and
GeForce RTX 3090 GPU. The training epoch is set to 2000, the learning rate to
0.0002, 81 t0 0.9, and B2 to 0.999. In addition, the number of heads H is set to 10,
and the number of layers is set to 6 in the TSS-Transformer net. Classification
sensitivity (SEN), specificity (SPE) and accuracy (ACC) are used as the metrics
to evaluate the performance of clinical epilepsy seizure detection [19].

The experiments used cross-entropy to train the network and the leave-one-
out method for n seizure data of each patient, i.e., the SEEG data of one seizure
is selected as the test set each time, and the data of the remaining n — 1 seizures
are selected as the training set, and the experiments are repeated for n times,
and the final average result on the test set is taken as the final result.

3.2 Experimental Results

Detection Performances. Using the LTSZ dataset for single-patient seizure
detection, the model is trained sequentially, and the final detection results are
shown in Table 2. The detection results on the SEEG signals of five patients
with epilepsy show that our proposed model achieves high detection accuracy,
with SEN, SPE and ACC reaching 99.48%, 99.80% and 99.48%, respectively.

Table 2. The performance of seizure detection on the LTSZ dataset.

Patient ID SEN(%) SPE(%) ACC(%)
1 100.0020.00 100.0020.00 100.0020.00
2 97.38+0.44 98.98+0.41 97.40£0.44
3 100.00-£0.00 100.00-£0.00 100.00-£0.00
1 100.0020.00 100.0020.00 100.0020.00
5 100.0040.00 100.0040.00 100.0040.00
Mean 99.48+0.09 99.80+0.08 99.48+0.09

We conducted comparisons with other detection algorithms, following the
same experimental procedures as our proposed CE-TSS-Transformer network.
As shown in Table 3, our method outperforms the other methods by improving
3.15%, 2.88% and 2.81%, respectively.

Ablation Study. Multi-scale division uses 6 SEEG rhythms because single-
scale analysis can’t fully capture brain activity, so features from all rhythms
are needed. To further validate the effectiveness, we compare the CE-TSS-
Transformer with five simple structures. As shown in Fig. 3, our proposed frame-
work outperforms the other five baselines in all classification scenarios.
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Table 3. The performance comparison of different methods for seizure detection.

LTSZ dataset
Method SEN(%) SPE(%) ACC(%)
EMD+SVM 93.32+0.52 96.35+0.47 94.76+0.12
CWT+SVM 96.77+0.32 97.83+0.18 94.9240.46
Deep ConvNet 97.23+0.41 96.08+0.37 98.0740.48
Transfomer 98.024+0.11 97.414+0.27 98.9340.18
CE-TSS-Transformer 99.48+0.09 99.80+0.08 99.48+0.09
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Fig. 3. Comparison of classification performance by multi-scale TSS analysis.

Performance on Other Neural Activity Modalities. Deep electrodes, strip
electrodes, and EEG signals are important means for detecting epileptic seizures.
Similar to SEEG signals, they record the neuronal firing process in the brain,
accompanied by temporal, spatial, and spectral changes.

To validate the scalability of our proposed method, we compared it with two
public datasets. On the Bonn dataset, similar to the CD-E classification task in
the LTSZ dataset, we achieved recognition rates of 98.69% for SEN, 99.68% for
SPE, and 99.00% for ACC. On the CHB-MIT dataset, comprehensive evaluation
showed average SEN, SPE, and ACC values of 99.76%, 99.93%, and 99.83%,
respectively. Compared to other studies, our epileptic seizure detection results
are superior. Detailed experimental results are shown in Table 4, demonstrating
the scalability of our proposed CE-TSS-Transformer detection method.

Table 4. Comparison with other related work on the Bonn and CHB-MIT dataset

Dataset Author SEN(%) SPE(%) ACC(%)
Atal el al. [20] 98.66 98.50 98.50
Bomn Lian cf al|21] - - 98.03
Liu ef al[22] 97.00 99.50 98.70
This work 98.69 99.68 99.00
Jiang et al.[23] 98.36 99.32 99.45
Qureshi et al.[24] 97.17 99.72 99.62
CHB-MIT Liu ef al[25] 97.10 9777 97.18
This work 99.75 99.93 99.83
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4 Conclusion

In this paper, we constructed a epilepsy SEEG dataset—LTSZ dataset and pro-
posed a novel CE-TSS-Transformer framework for detecting seizures. Firstly, we
proposed a CE module to reduce dimensionality and adaptively construct opti-
mal representations for subsequent analysis. Secondly, we proposed unified multi-
scale TSS to capture multi-layered features. Finally, we used the Transformer
encoder to learn the global dependency of features. Experiments show that on
the LTSZ dataset, the framework achieves SEN of 99.48%, SPE of 99.80%, and
ACC 0f 99.48%. Additionally, we validate the effectiveness of our method through
experiments on ablation study and its scalability on public datasets.
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