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Abstract. Even though multiple studies have examined the decoding
of speech from brain activity through non-invasive technologies in recent
years, the task still presents a challenge as decoding quality is still insuf-
ficient for practical applications. An effective solution could help in the
advancement of brain-computer interfaces (BCIs), potentially enabling
communication restoration for individuals experiencing speech impair-
ments. At the same time, these studies can provide fundamental insights
into how the brain processes speech and sound. One of the approaches for
decoding perceived speech involves using a self-supervised model that has
been trained using contrastive learning. This model matches segments of
the same length from magnetoencephalography (MEG) to audio in a
zero-shot way. We improve the method for decoding perceived speech by
incorporating a new architecture based on CNN transformer. As a result
of proposed modifications, the accuracy of perceived speech decoding
increases significantly from the current 69% to 83% and from 67% to
70% on publicly available datasets. Notably, the greatest improvement
in accuracy is observed in longer speech fragments that carry semantic
meaning, rather than in shorter fragments with sounds and phonemes.
Our code is available at https://github.com/maryjis/MEGformer/
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1 Introduction

Brain-Computer Interfaces (BCIs) are increasingly being looked upon as promis-
ing avenue to identify and potentially restore lost abilities in individuals affected
by neurological conditions. Among multitude of applications, a significant por-
tion is dedicated to exploring and enhancing the potential for improving and
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restoring communication abilities.[3] [4] [1] Recent advancements in invasive neu-
ral interfaces have showcased the capacity to decode speech at remarkable speeds
of 62 and 78 words per minute approaching the speed of natural conversation.
[14] [8] Invasive neural interfaces enhance BMI performance but come with tech-
nical challenges like electronic limitations, signal quality variations over time,
the current impracticality for home use, and the need for surgical intervention
in the human body, with unexplored health consequences. [6]

Here we focus on the application of non-invasive MEG-BCI for investigating
speech perception in healthy individuals aiming to analyze this process utilizing
high-quality signals across varied sized groups. This exploration may shed light
on the nature and structure of language representations while offering insight
into the neural mechanisms underlying speech production and comprehension
for further research.

To the best of our knowledge, the only method [4] for speech decoding from
MEG data involves training a unified architecture on a diverse participant cohort,
rather than individual patients, and utilizing deep speech representations rather
than a limited set of interpretable features like sounds, phonemes, words, and
etc. [1] In [4], the model receives a segment of MEG recording as input and aligns
it with the respective audio segment using contrasting learning with CLIP and a
CNN encoder for brain activity decoding. However, the CNN encoder’s limitation
lies in its failure to consider extended interactions among brain activity patterns,
which could be beneficial for creating complex semantic representations. Thus,
replacing the CNN encoder block with a CNN transformer block has the potential
to enhance speech decoding performance.

In this paper, we introduce the first transformer-based approach for speech
decoding from non-invasive magnetoencephalography data, MEGFormer. The
model consists of two primary components: a brain module uses CNN trans-
former encoder block for processing MEG data, and an audio encoder based on
a pre-trained wav2vec 2.0 model for generating audio representations. Our analy-
sis incorporates two open MEG datasets of different sizes, comprising recordings
of brain activity during passive listening to short stories, along with the cor-
responding audio files. With contrastive learning techniques, the model is able
to predict brain activity patterns based on the audio segments. The proposed
method refines existing techniques, offering a superior and more adaptable solu-
tion. Our contribution is threefold:

– We introduce a new architecture MEGFormer that shows superior perfor-
mance compared with recent state-of-the-art methods on open datasets [4]

– To the best of our knowledge, we are the first to propose a transformer-based
architecture to encode brain signals for speech decoding task

– We demonstrate how the model’s performance improves with longer speech
segments, highlighting its ability to accurately decode complex speech rep-
resentations linked to high-level perception or even speech comprehension as
compared to simple sounds or phonemes.
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2 Methods

Fig. 1. Illustration of the proposed MEGFormer architecture for decoding speech based
on MEG brain activity. The proposed model is trained to map corresponding audio
representations extracted from wav2vec model (left side) to brain representations
received from CNN Transformer (right side) with CLIP loss.

2.1 Problem Formulation

Our goal is to decode perceived speech from brain signals - multivariate time se-
ries MEG data recorded from many scalp channels. We divide all brain recordings
and audio signals into segments of equal length. Each segment is characterized
by a multivariate time-series with dimensions T × C, where T is the number of
time points and C is the number of channels. The latent representation of speech
is a vector with T ×F shape, where F is the number of features. Hence, our ob-
jective is to find the best decoding function D, that matches brain activities with
audio representations:

D : RT×C ⇒ RT×F (1)

2.2 Model Architecture

We introduce MEGFormer architecture (Fig. 1), which is inspired by preceding
state-of-the-art work by Defossez [4] and allows the modulation of both local
and long interactions, which may be crucial for improving the quality of brain
activity representations. Furthermore, enhancing alignment between the brain
activity encoder and the wav2vec architecture will ensure that the generated
brain representations closely match audio representations. Therefore, we suggest
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incorporating a new transformer block into the Brain encoder module to improve
the model’s capabilities in extracting more precise features and encouraging
cross-modal alignment.

Fig. 2. Illustration of the proposed Brain activity encoder, composed of a CNN encoder
followed by a transformer encoder. The CNN encoder consists of 4 convolutional blocks
with residual connections, batch normalization, and GLU activation. The transformer
block comprises MHSA and MLP blocks. S is the subject index which passes to Subject
Layer. The CNN encoder block takes MEG data as input X with the size CxT. Here
T represents the number of time points, while C refers to the number of channels. It
then returns a latent representation with a size of SxT, where S is the output feature
size that is equivalent to the feature size obtained from wav2vec.

Audio encoder As an audio encoder, we take wav2vec 2.0 model (specifi-
cally, wav2vec2-large-xlsr-53 version). Wav2vec 2.0 model is trained with convo-
lution and transformer blocks to learn latent audio representations [2]. In [9] the
authors have shown the efficacy of mapping such speech representations with
brain activities.

Brain activity encoder Brain activity encoder obtains MEG signals from
all sensors and utilizes a spatial attention layer to map them onto 270 channels.
Additionally, following the methodology presented in [4], a Subject Layer is in-
troduced to facilitate the alignment of representations to the particular subject.
The received representations are passed through both CNN encoder layers and
transformer encoder layers (see Fig. 2). The choice of these layers is intentional,
as CNN encoder layers excel at capturing local contextual information in brain
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activities, while transformer layers focus on long-range interactions. The CNN
layers are implemented with four convolutional blocks, each containing three
convolutional layers, following the described approach [4]. The first two con-
volutions within each block include residual skip connections and progressively
increasing dilation rates. Each of them is followed by applying a BatchNorm
layer and a GELU activation function. The third convolution within the block
excluded both a residual connection and normalization, instead utilizing a GLU
activation, reducing channel count by half. Finally, two 1x1 convolutions are
performed, separated by a GELU activation function.

The transformer block comprises a Multi-head-self-attention block (MHSA)
and Multi-Layer Perceptron (MLP) [13]. The embeddings obtained from the
CNN encoder are treated as tokens for each timestamp. Each token, firstly,
passed through the multi-head-self-attention block formulated as:

SAi = softmax(
Q×KT

√
dk

)V (2)

MSAi = Concat(SA1, SA2, .., SAn)W0 (3)

Q, K, V is a query, key, and value matrices obtained by multiplication em-
bedding on corresponding projection matrix: Wq, Wk, Wv.W0 is projection all
concatenated heads to original embedding shape dmodel. We employ 8 attention
heads with a model dimension dmodel equals 264. Position embedding preceding
the transformer block is omitted, as it is integrated within the spatial attention
layer. The MLP layer with batch normalization and non-linearity followed by
the MHSA with an inner dimension of 2048.

Contrastive Loss. We employ the ’CLIP’ loss [11], well-regarded for its
capacity to align latent representations across different modalities, in the process
of mapping brain activities to sound representations. Using CLIP loss, brain
recordings X are mapped to their sound representations Y , with the model fclip
predicting match probabilities. This is computed by the dot product of X’s latent
representation Z with Y , followed by softmax normalization: p̂j = e⟨Z,Ŷj⟩∑N

j′=1
e
⟨Z,Ŷ

j′ ⟩
.

The ’CLIP’ loss is refining the model’s precision in predicting the correct sound
representation from brain activity, thus increasing both accuracy and robustness
formulated as:

LCLIP(p, p̂) = −
N∑
j=1

pj log(p̂j), (4)

3 Experiments

Datasets and preprocessing We evaluate our methods on two publicly avail-
able MEG datasets: Gwilliams[5] and Schoffelen[12]. Gwilliams dataset comprises
raw magnetoencephalography (MEG) recordings from 27 English speakers who
underwent a two-hour session of listening to speech narratives. Each healthy
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volunteer was recorded over two sessions using a 208 axial-gradiometer MEG
scanner at a sampling rate of 1000 Hz while listening to four stories from the
Manually Annotated Sub-Corpus (MASC). The dataset further provides infor-
mation about the temporal alignment of audio signals and brain activity col-
lected via MEG, linked to corresponding phonemes and words at each time step.
From the Schoffelen dataset, we used data obtained from 96 Dutch-speaking in-
dividuals engaged in listening to audio speech. MEG data were captured with a
275-channel axial gradiometer system (CTF) operating at a sampling frequency
of 1200 Hz. MEG data from each dataset was resampled to 120 Hz and fil-
tered within a range from 0.1 to 40 Hz. The data was standardized, and values
exceeding 20 standard deviations were restricted to minimize the influence of
significant outlier samples. A segment is defined as a distinct N-second brain
recording paired with its corresponding audio representation. All segments ac-
quired from the participants were divided into training, validation, and testing
sets, with 70%, 20%, and 10% of the data allocated to each split, respectively.
Given that a segment can be associated with multiple participants, we desig-
nated each segment exclusively to one split across multiple iterations. Thus, we
ensure the absence of identical segments among the splits.

We also propose to segment audio signals into distinct non-overlapping sound
blocks with the same window and stride values instead of fragmenting them into
sentence blocks with a 3-second window and a 0.3-second stride, as commonly
seen in related research [4]. This segmentation strategy enables the creation of
segments that could start with a word from one sentence and end with words
from another sentence. Consequently, a segment may not correspond to a single
sentence within our context. This strategy increases the number of segments by
50%. Furthermore, this modification facilitates dataset adjustment, resulting in
a more balanced distribution among the training, validation, and testing sets
with different segment lengths.

Experimental Setup The experiments were carried out using PyTorch and
were trained for 20 epochs on RTX 6000 GPUs. The Adam optimizer was ap-
plied with a learning rate of 3e-4, implementing early stopping based on the best
validation loss. The assessment of the model’s ability to identify corresponding
audio segments was based on the evaluation of top-10 accuracy and top-1 accu-
racy metrics, which means that the target segment was present among 10 and 1
predicted ones.

4 Results

The proposed architecture MEGFormer outperforms the current state state-of-
the-art method ([4], CNN approach) achieved top-10 accuracy 83.99 % compared
to 69.66 % in Gwilliams dataset and 70.49 % compared to 67.89 % in Schoffelen
dataset. (Table 1)

The preprocessing steps result in a minor improvement in quality and also
help to decrease the model overfitting. The introduced approach of segmenting
sound blocks based solely on sound characteristics, disregarding sentence bound-
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Table 1. Performance comparison of the proposed method with other state-of-the-art
methods on Gwilliams and Schoffelen dataset at 3s speech segments.

Gwilliams Schoffelen

top-10 acc top-1 acc top-10 acc top-1 acc

[4] (base) 69.66 40.12 67.89 37.40
+prepossessing 70.38 41.13 68.66 37.74
+splitting segments via sound 77.05 47.81 - -

[4] (base) (depth =6, dropout =0.2) 77.78 49.02 68.85 38.04
MEGFormer (ours) 83.99 55.08 70.49 39.43
Vanilla transformer 64.47 33.27 53.75 31.64
TimesNet 72.81 43.37 46.32 29.94

aries, led to an expansion in the sample size, thereby enhancing the model’s qual-
ity. In the case of the Gwilliams dataset, the sample size increased from 203152
to 314922 segments for training, yielding a top-10 accuracy of 77.05. However,
implementing this approach for the Schoffelen dataset posed challenges due to
the dataset’s configurations and the initial annotating encompassing audio-text
mapping based on sentence boundaries. Due to the smaller size of neuroimag-
ing datasets compared to other fields, improving data through augmentation
methods (such as segment splitting adjustments) and simplifying the base ar-
chitecture have been successful in improving the overall performance of the base
model [4]. This enhancement has resulted in an improvement in top-10 accu-
racy from 69.66% to 77.78 % and from 67.89 % to 68.85 % on Gwilliams and
Schoffelen datasets respectively.

Additionally, we experimented with the basic Vanilla transformer variation
and the current leading approach in time series analysis, TimesNet. However,
both models failed to outperform CNN and transformer CNN approaches in the
speech decoding task. This observation indicates that to effectively decode brain
activity from MEG data, it is advantageous to utilize a strategy that combines
convolutional and transformer blocks. This approach allows for addressing both
local context and long-range interactions.

Previously [4], the authors opted to use only segments that were 3 seconds in
duration. We conducted a study where we explored the relationship between the
length of brain and audio segments and their impact on speech decoding quality.
Segments of 3s, 4s, 7s were selected, and our results demonstrate that a longer
segment length leads to improved decoding quality (Fig. 3). We suppose that the
enhancements are associated with the properties of MEG data. A single electrode
in MEG can receive signals from a vast number of neurons spanning a wide area
of the brain, whereas discrete small regions in the brain may be responsible
for interpreting particular words or phrases. As a result, the creation of longer
segments representing advanced speech concepts requires the synchronization of
numerous brain regions, allowing for a more accurate capture of these distinctions
in the MEG signal.
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Fig. 3. The performance of the model significantly increases with longer segment
lengths. On the X-axis are segment lengths, and on the Y-axis is the model qual-
ity depending on segment length.

Closeness of phonemes audio to MEG signal To explain the improve-
ment of accuracy with the segment’s length increasing, we compared the shape
of the original audio of phonemes and received a MEG response. The Dynamic
Time Warping (DTW) algorithm was used to compare the raw series in the time
domain. [10]. Because the value of DTW depends on the length of audio and
MEG signal, a normalized version (nDTW) was used (See Eq. 1 in supplemen-
tary materials). The intuition behind this is "higher nDTW - closer the MEG
sensor data to audio". In Fig. 1 (see supplementary materials), we measured
nDTW for a random subset of subjects in the Gwilliams dataset on sensors po-
sitioned over the auditory cortex, using MEG segments of three different lengths:
0.8s, 3s, and 4s. As a result, the value of nDTW becomes greater with the in-
creasing length of the segment that can cause a boost in performance for the
proposed architecture. Also, we used Short Time Fourier Transform (STFT) to
compare the spectral characteristics of various sensors. Spectral characteristics
play an important role in understanding the frequency band of received sig-
nal[15]. We estimated the STFT for the same sensors as for nDTW. Then, The
distance (mean square error) between each pair of sensors was measured and
averaged on all phonemes (see Fig. 3 in supplementary materials). From this, we
can make two conclusions: the total difference between spectral characteristics
of sensors is decreasing by order, but the pattern (ratio) between each pair is
preserved. Thus, the following interpretation emerges: with an increase in the
length of the MEG segment, the different parts of the brain could be interpreted
for the model as the cluster of audio receptive field.

5 Discussion & Conclusion

Decoding speech directly from brain signals is a relatively new and emerging task.
In this study, we propose a new architecture MEGFormer, transformer-based
model for decoding perceived speech which improves previous state-of-the-art
model performance on two open datasets. Furthermore, we demonstrate that
the model’s performance dramatically improves with longer speech segments.
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With the development of larger datasets for speech production, it could be
adapted for this task without significant modifications. Thus, our work repre-
sents a critical advancement toward building a foundational model for brain
recordings. Recent studies have utilized limited vocabularies, whereas our model
demonstrates a zero-shot performance with an unrestricted one. This capabil-
ity is evidenced by the model’s ability to generalize to new words that do not
overlap with the training set, thus eliminating the need for additional training.

In practical applications, such as aiding individuals with speech impairments,
our model can be adapted to use a limited vocabulary set, significantly enhancing
performance and making it suitable for tasks like issuing predefined commands.
Our approach also holds potential for understanding differences between healthy
controls and patients with Auditory processing disorder which can lead to the
development of brain interfaces for them [7]. We believe that MEGFormer could
be used for developing more accurate and reliable BCI systems which is the goal
of our future research.
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