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Abstract. Deep Learning (DL) can predict biomarkers directly from
digitized cancer histology in a weakly-supervised setting. Recently, the
prediction of continuous biomarkers through regression-based DL has
seen an increasing interest. Nonetheless, clinical decision making often
requires a categorical outcome. Consequently, we developed a weakly-
supervised joint multi-task Transformer architecture which has been trained
and evaluated on four public patient cohorts for the prediction of two
key predictive biomarkers, microsatellite instability (MSI) and homolo-
gous recombination deficiency (HRD), trained with auxiliary regression
tasks related to the tumor microenvironment. Moreover, we perform a
comprehensive benchmark of 16 task balancing approaches for weakly-
supervised joint multi-task learning in computational pathology. Using
our novel approach, we outperform the state of the art by +7.7% and
+4.1% as measured by the area under the receiver operating character-
istic, and enhance clustering of latent embeddings by +8% and +5%, for
the prediction of MSI and HRD in external cohorts, respectively.
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1 Introduction

Over the past years, Deep Learning (DL) has proven its utility in predicting
biomarkers directly from WSIs with hematoxylin- and eosin (H&E)-staining
in a weakly-supervised manner. Weakly-supervised learning in computational



2 El Nahhas et al.

Fig. 1. Model overview. We tessellate WSIs into patches, extract CTransPath fea-
tures [25], linearly project them, and feed them into a Transformer encoder. A learnable
classification and regression token are added to the input of the Transformer decoder,
after which the output is fed to a classification and regression head, performing weakly-
supervised joint multi-task learning with weighting- and gradient-based task balancing.

pathology allows for large-scale analyses using solely the reported diagnosis as
training labels, eliminating the need for cost- and time expensive pixel-level
annotations [2]. The majority of studies predict categorical biomarkers with
classification-based methods [9, 24], with a recent study showing the benefit of
applying a regression-based method instead of dichotomizing the target for re-
formulation as a classification problem [6]. The studies predominantly follow
the same pattern for model validation, often using heatmaps, top tiles and
concordance analyses to confirm the model’s alignment with known biologi-
cal concepts [19, 14]. For example, biomarkers such as microsatellite instability
(MSI) and homologous recombination deficiency (HRD) are predictive biomark-
ers which have known correlations with immune cells in the tumor microenviron-
ment (TME) [1, 20]. However, the current state of the art for predicting MSI and
HRD do not use observations from the tumor microenvironment as an additional
learned task [24, 6], potentially leaving room for improved biomarker prediction.
This leads to our primary research question: Does including additional biological
information in the form of an auxiliary regression task improve the prediction
performance of the main classification task in weakly-supervised computational
pathology? Consequently, we develop a joint multi-task learning Transformer
model which predicts the main classification task of MSI or HRD, while learning
additional information about the TME through an auxiliary regression task in
a weakly-supervised setting. Our contributions are as follows:

1. We propose a weakly-supervised joint multi-task learning framework that
allows for additional biological information about the tumor microenviron-
ment to be learned to improve the main biomarker prediction objective.

2. We conduct the first comprehensive benchmark of 16 multi-task balancing
approaches in weakly-supervised computational pathology.

3. We improve over state-of-the-art weakly-supervised classification models for
2 highly relevant biomarkers, MSI and HRD, in 4 publicly available cohorts.
Furthermore, we publicly release our code to promote reproducibility.
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2 Related work

The concept of multi-task learning has been applied to the field of computa-
tional pathology for H&E WSIs in various studies. Yan et al. [27] and Graham
et al. [8] combined segmentation and classification tasks using cross-entropy (CE)
losses which are summed with equal weights for each task. A variety of stud-
ies combined solely classification objectives in a multi-task setting, using CE
losses which are equally summed across the tasks [21, 18], or as a weighted sum
with constants found through a hyperparameter search [16, 17]. Gao et al. [7]
combined a CE loss with a mean-squared error (MSE) loss which are balanced
according to preset constants which only update in specific, pre-defined scenarios,
and are manually bounded. Only Lu et al. [16] and Marini et al. [17] approached
the multi-task problem from a weakly-supervised perspective. In summary, prior
studies opted for weighted-based balancing approaches for multi-task learning,
which were either equally balanced, or fine-tuned for very specific use-cases that
likely do not translate well to other scenarios of a similar kind [21]. This leaves a
clear gap in the computational pathology literature for the application of more
sophisticated, model-guided balancing of losses and gradients [3, 10–13, 15, 28],
especially in a weakly-supervised setting.

3 Method

We consider a dataset of N WSIs X(1), . . . ,X(N), where each WSI X(i) ∈
RW×H×3 is an RGB image of width W and height H, though these dimensions
may vary between slides. During training, each WSI X(i) is associated with a
binary classification label y(i) ∈ Y = {0, 1} for the main task, as well as an aux-
iliary regression label a(i) ∈ R. For example, the classification label y(i) could
indicate MSI status, and the auxiliary target a(i) could represent a molecular
signature for lymphocyte infiltration, which takes on continuous values.

Due to their large size, it is common to consider WSIs as collections of
patches, framing the WSI classification problem as a weakly supervised learning
task. More specifically, we split each WSI X(i) into a set of n non-overlapping
patches {x(i)

1 ,x
(i)
2 , . . . ,x

(i)
n } where each x

(i)
j ∈ X = RP×P×3 for a fixed patch

size P (the number of patches n varies depending on the particular slide’s dimen-
sions). We follow the STAMP protocol [5], which sets the patch size P = 224 at
an edge length of 256 microns (which corresponds to approximately 9× magnifi-
cation), yielding n(i) ∈ N non-background patches per slide. The task is to train
a model M : P(X ) → Y that at inference time predicts the classification label
given a bag of patches representing a WSI. During training, this model should
learn from both the classification labels y and the auxiliary regression target a,
though at inference time we are only interested in the former.

Obtaining the prediction from a collection of patches representing a WSI is a
two-step process consisting of (i) feature extraction and (ii) feature aggregation,
outlined in Fig. 1. We describe these steps in the sections below. The source
code is available at: https://github.com/KatherLab/joint-mtl-cpath.
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3.1 Feature extraction

Our model operates on feature vectors instead of raw patches. Thus, we first
apply a feature extractor E : X → Rdz individually to each patch x

(i)
j in or-

der to obtain a corresponding feature vector z
(i)
j = E

(
x
(i)
j

)
that meaningfully

represents each patch. We parameterize E with CTransPath [25], a model that
was pretrained on 32,000 WSIs across various cancer types using self-supervised
learning. The extracted CTransPath feature vectors, which are of dimensionality
dz = 768, are cached before training to save compute. As such, our preprocessing
and feature extraction setup closely follows the STAMP [5] protocol, except for
the exclusion of stain normalisation [26].

3.2 Architecture

Our joint multi-task Transformer architecture (Fig. 1) modifies Vaswani et al.’s
design [23]. We first project features into a lower-dimensional latent space to
manage complexity, then encode these projected tokens using a Transformer en-
coder stack. We decode using [cls] tokens for classification and [rgr] tokens
for regression. Each decoded token passes through a fully connected layer for
label-wise prediction. This architecture improves upon the classic Vision Trans-
former[4] for scalable multi-task, multi-label predictions. Key differences from
Vaswani et al.[23] include: 1) an initial projection stage enabling use with larger
input feature dimensions, and 2) fixed, learned class tokens with independent
fully connected layers for multiple label prediction.

3.3 Training

All models are trained in a weakly-supervised setting using CTransPath feature
vectors[25]. We employ 5-fold cross-validation with an 80-20 split for training
and testing, maintaining consistent patient splits across all compared models.
We report the mean AUROC and AUPRC with 95% confidence interval, and
mean silhouette score (SS) across the 5 folds. The baseline model performs only
classification of MSI or HRD, while the joint-learned model additionally re-
gresses tumor microenvironment signatures: lymphocyte infiltrating signature
score (LISS), leukocyte fraction (LF), stromal fraction (SF), tumor cell prolif-
eration (Prolif), and intratumor heterogeneity (ITH), chosen for their biological
concordance with MSI and HRD (Suppl. Fig. 1). We optimize using AdamW [15]
with a learning rate of 1e-4, CE loss for classification, and MSE loss for regres-
sion. Training uses all n patch features per WSI with a batch size of 1 for 32
epochs. Early stopping is triggered after 7 epochs without CE loss decrease in
the primary classification task.

3.4 Multi-task balancing

We apply and compare a total of 16 task balancing approaches for the joint
multi-task learning experiments. For weighting-based balancing, we use uncer-
tainty (uncert) [10], dynamic weight averaging (dwa) [13], and Auto-Lambda
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(autol) [12]. For gradient-based balancing, we use gradient sign dropout (grad-
drop) [3], projecting conflicting gradients (pcgrad) [28], and conflict-averse gra-
dient descent (cagrad) [11]. For comparison with methods used in prior stud-
ies, we include an approach which weights the tasks equally (naive). Previous
work states that combining weighting- and gradient-based balancing in multi-
task learning can improve performance [12], which leads to the combination of
aforementioned methods. All balancing approaches focus on single objective op-
timization, i.e. improving the classification performance regardless of the regres-
sion performance, except for autol which performs multi-objective optimization
for both classification and regression [12]. Weighting-based balancing affects all
non-frozen layers in the network, whereas gradient-based balancing only affects
the shared projector, encoder and decoder layers (Fig. 1).

4 Experiments and Results

4.1 Data

We use four public cohorts for the training and evaluation of the models. For
MSI, we train on the colorectal cancer (CRC) cohort from The Cancer Genome
Atlas (TCGA), TCGA-CRC, and evaluate on the CRC cohort from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC), CPTAC-CRC. For HRD, we
train on the lung adenocarcinoma (LUAD) cohort from TCGA, TCGA-LUAD,
and evaluate on the LUAD cohort from CPTAC, CPTAC-LUAD. The public
biomarker data for MSI is from the study by Wagner et al. [24], for HRD is
from the study by El Nahhas et al. [6], and for the TME is from the study by
Thorsson et al. [22].

4.2 Joint multi-task learning improves classification predictions

We develop a Transformer architecture for weakly-supervised joint multi-task
classification and regression using WSI features. To our knowledge, this is the
first work predicting MSI or HRD directly from WSIs in a joint multi-task set-
ting. We compare our model to state-of-the-art MSI [24] and HRD [6] weakly-
supervised classification models and include a baseline without auxiliary re-
gression tasks. Our baseline outperforms the state-of-the-art MSI model (AU-
ROC 86.1% vs 83.0% [24] in TCGA-CRC) and HRD model (AUROC 71.6%
vs 70.0% [6] in TCGA-LUAD). Introducing auxiliary regression tasks for tu-
mor microenvironment quantification further improves performance. Our joint
multi-task model achieves an AUROC of 94.0% and AUPRC of 84.5% for MSI
prediction in TCGA-CRC, and an AUROC of 73.4% and AUPRC of 59.8% for
HRD prediction in TCGA-LUAD (Table 1, Suppl. Table 1 and 2). This repre-
sents improvements of +11% and +3.4% in AUROC over the state of the art,
respectively. These results demonstrate that weakly-supervised joint multi-task
learning enhances classification performance compared to both the baseline and
state-of-the-art.
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Table 1. Performance overview of weakly-supervised MSI and HRD biomarker predic-
tion models comparing weighting- and gradient-based task balancing methods.

MSI HRD
TCGA-CRC CPTAC-CRC TCGA-LUAD CPTAC-LUAD

Methods AUC PRC AUC PRC AUC PRC AUC PRC
SOTA 83.0 - 82.0 - 70.0 - 82.0 -
baseline 86.1 61.4 86.4 70.5 71.6 57.7 81.0 30.3
naive 86.4 62.7 88.2 72.4 69.6 57.6 81.2 33.7
dwa 84.2 58.7 87.7 70.8 73.3 60.3 83.6 40.8
uncert 86.0 63.4 88.4 72.6 73.2 60.1 83.1 41.5
autol 94.0 84.5 86.9 73.1 72.2 58.5 85.2 43.0
graddrop 85.8 61.2 87.3 71.7 71.1 58.8 84.4 42.5
pcgrad 85.4 62.4 87.3 72.0 72.1 60.4 84.1 41.2
cagrad 86.5 62.7 89.7 76.6 72.6 58.7 85.4 42.1
dwa + graddrop 85.5 59.8 87.6 71.6 72.6 58.4 83.3 40.2
dwa + pcgrad 85.6 62.3 88.8 73.3 73.4 59.8 83.0 39.1
dwa + cagrad 85.8 59.9 88.4 73.8 71.8 57.9 85.5 44.3
uncert + graddrop 85.5 60.7 87.6 71.7 72.6 59.4 83.9 42.3
uncert + pcgrad 86.7 62.5 89.0 74.2 71.8 55.4 83.6 39.9
uncert + cagrad 86.3 60.7 88.9 74.6 72.4 58.8 84.4 41.9
autol + graddrop 85.3 61.6 86.7 69.4 70.8 56.0 84.8 43.4
autol + pcgrad 86.1 63.2 87.9 73.6 72.0 58.2 85.6 42.8
autol + cagrad 86.5 62.0 89.9 76.3 71.9 57.0 86.1 43.8

4.3 Joint multi-task learning improves generalizability

Next, we evaluate the generalizability of the joint multi-task learned models to
external cohorts, comparing them to the baseline and state-of-the-art models
for MSI [24] and HRD [6] classification (Table 1, Suppl. Table 1 and 2). The
baseline model outperforms the state-of-the-art MSI model by +4.4% AUROC,
while performing slightly worse (-1% AUROC) for HRD. Introducing auxiliary
regression tasks with weighting- and gradient-balancing schemes substantially
improves performance on external cohorts. The model with autol + cagrad bal-
ancing achieves an AUROC of 89.9% and AUPRC of 76.3% for MSI in CPTAC-
CRC, and an AUROC of 86.1% and AUPRC of 43.8% for HRD in CPTAC-
LUAD. This represents +7.7% and +4.1% improvements over state-of-the-art
models for MSI and HRD prediction in external cohorts, respectively.

4.4 Joint multi-task learning improves latent-embedding clustering

Finally, we analyze the latent space of the classification head input (Fig. 1), com-
paring clustering capabilities of the 384 -dimensional embeddings in both classi-
fication and joint-learning settings. The joint-learned embeddings show superior
clustering performance, with the best combinations being (autol + cagrad) for
MSI (SS: 0.44) and (dwa + cagrad) or (uncert + cagrad) for HRD (SS: 0.12).
These represent improvements of 8% and 5% over the baseline for MSI and HRD,
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respectively. Visualization of embeddings using t-SNE in an external cohort
(CPTAC-CRC) shows equal AUC (87%) but substantially improved SS (0.52
vs 0.33) for joint-learned embeddings compared to the baseline (Suppl. Fig. 2).
These results demonstrate improved latent-embedding clustering and generaliz-
ability of our proposed model.

Table 2. Clustering performance of the latent embeddings on external cohorts as
measured by the silhouette score.

MSI
CPTAC-CRC

HRD
CPTAC-LUAD

Methods ITH LF LISS Prolif SF mean ITH Prolif mean
baseline 0.35 0.34 0.38 0.35 0.38 0.36 0.05 0.10 0.07
naive 0.43 0.39 0.42 0.41 0.45 0.42 0.05 0.08 0.08
dwa 0.26 0.33 0.33 0.33 0.27 0.30 0.07 0.01 0.04
uncert 0.30 0.34 0.39 0.33 0.31 0.33 0.07 0.01 0.04
autol 0.37 0.48 0.41 0.37 0.39 0.40 0.10 0.07 0.09
graddrop 0.31 0.35 0.29 0.32 0.27 0.31 0.08 0.04 0.06
pcgrad 0.28 0.44 0.38 0.32 0.35 0.35 0.08 0.01 0.05
cagrad 0.36 0.48 0.39 0.45 0.43 0.42 0.14 0.05 0.10
dwa + graddrop 0.31 0.31 0.33 0.31 0.27 0.31 0.04 0.03 0.04
dwa + pcgrad 0.31 0.39 0.38 0.38 0.30 0.35 0.05 0.03 0.04
dwa + cagrad 0.33 0.40 0.45 0.43 0.43 0.41 0.15 0.08 0.12
uncert + graddrop 0.31 0.31 0.32 0.31 0.23 0.30 0.08 0.03 0.06
uncert + pcgrad 0.33 0.44 0.34 0.38 0.33 0.36 0.05 0.02 0.04
uncert + cagrad 0.37 0.48 0.44 0.38 0.43 0.42 0.16 0.07 0.12
autol + graddrop 0.32 0.30 0.29 0.32 0.29 0.30 0.10 0.08 0.09
autol + pcgrad 0.34 0.37 0.31 0.35 0.32 0.34 0.10 0.06 0.08
autol + cagrad 0.44 0.45 0.43 0.45 0.41 0.44 0.12 0.07 0.10

5 Conclusion

We developed a weakly-supervised joint multi-task Transformer architecture in-
corporating tumor microenvironment information to improve MSI and HRD
prediction. An ablation study of 16 multi-task balancing approaches demon-
strated their impact on performance. Therefore, we conclude that a combination
of gradient- and weighting-based balancing outperforms naive balancing and
should be considered in multi-task weakly-supervised problems in computational
pathology. Our approach achieves state-of-the-art performance in classifying MSI
and HRD from WSIs across multiple cohorts, showing improved generalizability
and latent space embedding clustering. This work demonstrates the potential
of biology-informed deep learning with auxiliary tasks for predictive biomarker
classification. Follow-up HRD studies should consider evaluation of our method
on other solid tumors such as ovarian cancer.
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