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Abstract. Pre-trained large vision-language models (VLMs) like CLIP
have revolutionized visual representation learning using natural language
as supervisions, and demonstrated promising generalization ability. In
this work, we propose ViP, a novel visual symptom-guided prompt learn-
ing framework for medical image analysis, which facilitates general knowl-
edge transfer from CLIP. ViP consists of two key components: a vi-
sual symptom generator (VSG) and a dual-prompt network. Specifi-
cally, VSG aims to extract explicable visual symptoms from pre-trained
large language models, while the dual-prompt network utilizes these
visual symptoms to guide the training on two learnable prompt mod-
ules, i.e., context prompt and merge prompt, which effectively adapts our
framework to medical image analysis via large VLMs. Extensive exper-
imental results demonstrate that ViP can outperform state-of-the-art
methods on two challenging datasets. The code is available at https:
//github.com/xiaofang007/ViP.

Keywords: Prompt Learning · Vision-Language Models · Large Lan-
guage Model · Medical Image Analysis.

1 Introduction

Medical image analysis plays a crucial role in healthcare, enabling non-invasive
diagnosis and treatment of various medical conditions [14,15,3,23]. With the
advent of deep learning techniques, computer-aided medical image analysis has
achieved remarkable success in numerous scenarios. Current methods generally
adopt the supervised learning paradigm which requires a large amount of labeled
data for model training. However, this paradigm relies on manual annotation of
medical images, which is time-consuming and labor-intensive [24].

The emergence of large vision language models (VLMs) [11,12,13] makes
it possible to transfer knowledge from large-scale pre-trained models to task-
specific medical image analysis models with limited data. One prominent exam-
ple is Contrastive Language-Image Pre-training (CLIP) [21], which is pre-trained
† Equal contribution; B corresponding author.
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on 400 million image-text pairs using contrastive learning. In detail, it com-
prises a vision and a text encoder that encodes an image and its corresponding
text snippet into visual and textual embeddings, respectively. While CLIP has
demonstrated great potential in transfer learning across diverse tasks in univer-
sal scenes, its direct applications to the medical domain raise challenges. This is
because CLIP is pre-trained mainly on web-scraped data, which primarily com-
prises natural image-text pairs and lacks medical data due to privacy concerns,
while the category texts of medical images tend to be abstract medical lexi-
cons, which can be hard for CLIP to interpret. Inspired by recent work [18,20],
we propose to address the interpreting challenge by translating abstract medical
lexicons to visual symptoms that are shared across natural and medical domains,
such as color, shape and texture. In this way, VLMs can learn to align image
features with visual features that are easily interpreted. This process also aligns
with the diagnostic approach employed by medical professionals, who diagnose
diseases based on related visual features observed in medical images.

In this paper, we propose ViP, a novel Visual symptom-guided Prompt
learning framework that promotes general knowledge transfer of CLIP [21]. The
framework consists of two main components: A visual symptom generator (VSG)
and a dual-prompt network. VSG queries pre-trained large language models
(LLMs) to generate visual symptoms, which serve as text inputs for the dual-
prompt network. The dual-prompt network enhances the generalization ability
of CLIP by training two learnable prompt modules: context prompt (CoP) and
merge prompt (MeP). CoP refines visual symptoms by incorporating medical
task context while MeP aggregates text features of visual symptoms. The pro-
posed framework is evaluated on two public datasets, including Pneumonia [9]
and Derm7pt [8]. Extensive experimental results demonstrate that ViP outper-
forms state-of-the-art methods, highlighting the efficacy of each component in
our framework.

The main contributions of our work are as follows: 1) We reveal the sig-
nificant impact of LLMs on prompt engineering, showcasing their influence on
enhancing interpretability and performance. 2) We propose ViP that leverages
LLMs to generate visual symptoms in a scalable manner and employs two learn-
able prompt modules to facilitate knowledge transfer from CLIP to the medical
domain. 3) We conduct extensive experiments on two datasets, and the result
demonstrates the strong generalization ability of ViP to medical image analysis.

2 Method

2.1 Overall Pipeline

The pipeline of our method is presented in Fig. 1. We consider an input image
x and a set of disease labels C = {c1, c2, ..., cn}, where we denote N as the to-
tal number of disease categories, with N = n. The process begins by passing x
through a pre-trained vision encoder in the dual-prompt network to compute a
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Fig. 1: Overview of ViP, which consists of a visual symptom generator (VSG)
and a dual-prompt network. The visual symptoms predicted by VSG are used
as inputs for downstream networks (marked by the blue dashed line).

feature vector f . In parallel, several visual symptoms are generated by the vi-
sual symptom generator (VSG) for each disease category. These visual symptoms
then undergo transformation in the context prompt module (CoP) to create tex-
tual input embeddings for the dual-prompt network. These textual embeddings
are then processed through the pre-trained text encoder to compute the textual
features for each visual symptom. Next, the merge prompt module (MeP) aggre-
gates text features to obtain a representative feature sc for disease category c.
Going over all categories c ∈ C, we obtain a set of aggregated visual descriptive
features S = {sc1 , sc2 , ..., scn}. Finally, we predict the disease category with the
highest cosine similarity score f · sc, c ∈ C. In the following sections, we will
explain the VSG and the dual-prompt network in detail.

2.2 Visual Symptom Generator (VSG)

VSG aims to generate a comprehensive set of visual symptoms specific to each
disease category. Impressed by the broad knowledge possessed by LLMs and that
they can be easily queried with natural language, we propose a two-stage process
to construct this set by prompting a large language model, such as GPT-4 [1].
First, we use a text-only prompt to obtain a coarse set of visual symptoms. We
prompt the language model with the following text as the input:

Q: I am going to use CLIP, a vision-language model to detect {category}
in {modality}. What are useful medical visual features for diagnosing
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{category}? Please list in bullet points and explain in plain words
that CLIP understands. Avoid using words such as {category}.

where {category} is substituted for a given category c ∈ C and {modality} is
substituted for the imaging modality of the dataset, e.g., dermoscopic images.
The prompt is designed to provide sufficient background for GPT-4 and en-
sure the answers are understandable by CLIP. Next, we refine the coarse set by
leveraging the visual-question-answering function of GPT-4. We prompt it with
multiple images for each disease category using the following query:

Q: Please provide visual features regarding color, shape, and texture of
this {category} image, which contains 16 sub-images.

After receiving the response that encompasses a set of commonly observed visual
features across images, the refined set is obtained by intersecting the initial coarse
set with the response. Fig. 2 demonstrates the visual symptoms generated by
GPT-4 [1] using our designed pipeline. As expected, generated visual symptoms
typically cover descriptions of color and shape of lesions, presence or absence of
certain structures, and other relevant visual features.

2.3 Dual-Prompt Network

The dual-prompt network is built upon CLIP. We freeze the image encoder and
text encoder of CLIP to retain the general knowledge from the large-scale pre-
training data. Unlike conventional CLIP-based approaches that rely on category
names for textual input, we use visual symptoms generated from the VSG to
enable the model to facilitate the alignment of image features with visual de-
scriptive features. However, the generalization ability of our framework is still
limited. This limitation arises due to potential deviations from the expected
CLIP text input format in the response from LLMs, and the inherent challenge
of effectively aggregating visual symptoms into a disease representation with-
out explicit training [17,6]. Therefore, we further propose two learnable prompt
modules: context prompt (CoP) and merge prompt (MeP), to enhance the model
generalization ability.
CoP. In addition to category names, context words help to form a complete
sentence that specifies the context of the image, which plays a crucial role in
the textual input of CLIP. For example, CLIP prepends category names with
the context {a photo of a}. Similarly, it is desirable to prepend visual symptoms
with a customized template to capture the context of medical tasks. However,
it is challenging to design hand-crafted templates for visual symptoms due to
their more complex phrase structure. Motivated by [26], we introduce a set of
learnable tokens {pi}Mi=1, where pi ∈ Rd, i = 1, 2, ...M , and d is the text embed-
ding dimension, before visual symptoms to automatically learn the context of
medical tasks in a data-driven manner. Specifically, given a category c ∈ C, and
a visual symptom word embedding ed, the final textual input word embedding
T for the text encoder is the concatenation of the learnable tokens and ed, which
can be formulated as T = Concat(p1, p2...pM , ed).
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Fig. 2: Example visual symptoms generated by GPT-4 [1].

MeP. After processing visual symptoms via text encoder, the next step is to
merge visual symptoms into a single representation. Previous methods [16,18,2]
adopt the average function, which treats all visual symptoms as equally im-
portant, or the max function, which diagnoses based on the most prominent
feature. However, these functions suffer from inherent bias because not all visual
symptoms contribute equally to a disease. Additionally, it is impossible to ac-
curately diagnose a disease based solely on the most prominent visual symptom
in all cases. Therefore, we introduce a learnable token for each disease category
to learn the representative feature of the disease. Specifically, given a category
c ∈ C, text features matrix T = [T c

1 , T
c
2 , ..., T

c
k ]

T , where T ∈ Rk×d and d is the
text embedding dimension, which is obtained by processing related visual symp-
toms through the text encoder, and a learnable grouping token g ∈ Rd, we first
project g and T into query Q ∈ Rd and key K ∈ Rk×d with different weights
Wq ∈ Rd×d and Wk ∈ Rd×d, which can be formulated as:

Q = gWq,K = TWk. (1)

The aggregated feature sc is calculated by combining the grouping prompt g and
weighted text features matrix T , which can be formulated as:

sc = g + Softmax(
QKT

√
d

)T. (2)

After obtaining the aggregated visual descriptive features of all disease cate-
gories, CoP and MeP are jointly optimized with a cross-entropy loss, which can
be formulated as:

Lce = − log
exp(f · scy/γ)∑N
i=1 exp(f · sci/γ)

, (3)

where cy denotes the ground truth disease category and γ is a learned temper-
ature.
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Fig. 3: (I) Zero-shot CLIP with category name or visual symptoms as text inputs.
(II) Diagnostic process based on cosine similarity scores between images and
visual symptoms.
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3 Experiments

3.1 Dataset and Implementation Details

Dataset. We conduct experiments on two publicly available datasets: Pneumo-
nia [9] and Derm7pt [8]. Pneumonia consists of chest X-ray images categorized as
either normal lung or pneumonia. The official split of this dataset contains 5232
images for training and 624 images for testing. We further randomly divide the
training set with a ratio of 9:1 for training and validation. Derm7pt consists of
over 2000 clinical and dermoscopic images. Following [19], we filter the dataset to
obtain 827 images belonging to the "melanoma" and "nevus" classes, and split
the dataset into 346, 161, and 320 images for training, validation, and testing,
respectively. For both datasets, we adopt Accuracy (ACC) and Macro F1-score
(F1) as evaluation metrics. Macro F1-score addresses the data imbalance issue
by computing the arithmetic mean of all per-class F1 scores.
Implementation Details. We train the proposed ViP model on an NVIDIA
RTX 3090 GPU. Throughout the experiments, we average the results of three
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Table 1: Result comparisons with SOTAs. The mean and standard deviation is
computed across three vision backbones.

Method Pneumonia Derm7pt
ACC F1 ACC F1

CoOp [26] 0.83370.019 0.81480.017 0.78230.005 0.73280.017

CoCoOp [25] 0.84400.025 0.82170.032 0.76680.014 0.66470.057

KgCoOp [22] 0.83030.022 0.80100.027 0.77260.009 0.70930.033

Bayesian [4] 0.83010.041 0.80810.048 0.69210.014 0.55610.054

MaPLe [10] 0.85530.034 0.83930.036 0.79030.038 0.72500.073

Supervised 0.86600.025 0.85300.025 0.72770.044 0.62360.093

ViPours 0.86690.031 0.84940.036 0.81110.007 0.77300.015

vision backbones in CLIP [21], i.e., ViT-B/16 [5], ViT-L/14 [5], and ResNet-
50 [7]. We follow CLIP [21] to set the text embedding dimension d to 512. We
follow CoOp [26] to learn a unified task context and set the length M of the
context prompt (CoP) to 4. Training is done with SGD and an initial learning
rate of 0.001. The training epoch is set to 50. We follow CLIP [21] to set the
temperature γ in the cross-entropy loss to 1

100 .

3.2 Comparisons with State-of-the-art Methods

Effectiveness of explainable visual symptoms. We conduct a zero-shot
experiment to evaluate the effectiveness of visual symptoms for disease diagno-
sis, while also providing explanations for the decisions. Specifically, our approach
makes decision by comparing images to the average embedding of visual descrip-
tive features. As shown in Fig. 3(I), compared with zero-shot CLIP, our method
achieves 0.44% and 18.73% accuracy improvement, and F1-score gains of 1.58%
and 10.98% over Pneumonia [9] and Derm7pt [8], respectively. This suggests
that LLMs can provide useful knowledge for the medical domain. We further
analyzed cases where our method correctly predicts the disease category while
CLIP fails, as shown in Fig. 3(II). Our framework improves diagnosis accuracy
due to the relatively higher similarity between the images and the characteristics
of the correct category. For instance, Fig. 3(II)(d) is diagnosed as nevus because
it demonstrates higher similarity with several characteristics of nevus such as
clear edges, consistent brown color, and swelling around the lesion, despite there
being a small, black area inside the lesion. However, as shown in Fig. 4, there are
instances where our method fails to predict the disease category. In Fig. 4(I),
although the image exhibits higher similarity with pneumonia characteristics,
such as the presence of pleural effusion and air bronchogram sign, the average
similarity is lower due to the less obvious symptoms of cavitation and consolida-
tion. This highlights the limitation of using the average function to represent the
overall visual features of a disease. In Fig. 4(II), our method fails to diagnose
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Table 2: Ablation study results. “Context” and “Merge” denote context prompt
(CoP) and merge prompt (MeP), respectively. “Max” and “Mean” denote the
maximum and average of visual descriptive features, respectively.

Context Merge Pneumonia Derm7pt
ACC F1 ACC F1

✗ ✗ 0.5861 0.5549 0.5539 0.4558
✗ ✓ 0.8486 0.8312 0.7531 0.6194
✓ Max 0.8390 0.8223 0.7970 0.7506
✓ Mean 0.8550 0.8347 0.8041 0.7646
✓ ✓ 0.8669 0.8494 0.8111 0.7730
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brown,  tan or black
Redness or swelling around the spot
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Smooth or rough texture, with visible pores, 
wrinkles, or blemishes
Redness or swelling around the spot

Useless
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78
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co

re
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%
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Fig. 5: Ablation study comparing with different types of knowledge.

correctly because the image shares high similarity with nevus characteristics,
such as brown color.
Comparison with related methods. We further compare ViP with several
SOTA prompt-based models to evaluate the generalization ability. As shown
in Table 1, ViP achieves highest accuracy of 86.69%, 81.11%, and F1-score of
84.94% , 77.3% on Pneumonia [9] and Derm7pt [8], respectively, indicating the
strong generalization ability of our method. Moreover, compared with the fully
supervised learning mode, ViP achieves competitive result on Pneumonia [9] ,
but outperforms a great margin on Derm7pt [8] where there is less training data,
demonstrating the strong generalization ability of ViP in low-resource settings.

3.3 Ablation Study

Effectiveness of each component. We conduct ablation studies to explore
the effectiveness of each component in ViP, as shown in Table 2. Compared with
zero-shot baseline, both the integration of CoP and MeP exhibit considerable
improvement, demonstrating the importance of learning medical task context
and effective aggregation of visual symptoms. Moreover, compared with non-
parametric aggregation methods, such as average and max functions [2,18], our
proposed MeP outperforms in both datasets. This result further validates the
effectiveness of our method.
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Knowledge Faithfulness. We conduct an additional experiment to validate
our argument that LLM-generated visual symptoms provide useful knowledge
for the generalization to the medical domain. As shown in Fig. 5, we replace
the visual symptoms of nevus with three types of knowledge: 1) Out-of-domain
knowledge, involving visual symptoms unrelated to the medical domain, such as
descriptions of food. 2) Useless knowledge, referring to descriptions associated
with our target disease but do not provide useful information for diagnosis, such
as descriptions of skin structure. 3) Incorrect knowledge, which provides erro-
neous symptoms for diagnosis. In this experiment, we alter certain words in the
descriptions to their antonyms to create misleading descriptions of nevus. Com-
pared to other variations, LLM-generated knowledge achieves best performance,
indicating that accurate visual symptoms contribute to the generalization in the
medical domain.

4 Conclusion

This paper presented a novel visual symptom-guided prompt learning pipeline,
referred to as ViP, which effectively transfers knowledge from VLMs to medi-
cal image analysis. By leveraging pre-trained LLMs, ViP generates useful visual
symptoms to guide CLIP in aligning image features with visual symptoms. Ad-
ditionally, ViP incorporates two learnable prompt modules, context prompt and
merge prompt, to further enhance the generalization ability. Experimental re-
sults underscored the effectiveness of each module and the superior performance
of our pipeline to state-of-the-art methods. Future work will focus on extending
the framework to other medical image analysis tasks, such as the diagnosis of
rare diseases and malformed organs, where data and annotations are scarce and
costly. Additionally, we will investigate techniques to enhance the interpretability
of context prompt.
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