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Abstract. In large scale electron microscopy(EM), the demand for rapid
imaging often results in significant amounts of imaging noise, which
considerably compromise segmentation accuracy. While conventional ap-
proaches typically incorporate denoising as a preliminary stage, there
is limited exploration into the potential synergies between denoising
and segmentation processes. To bridge this gap, we propose an instance-
aware interaction framework to tackle EM image denoising and seg-
mentation simultaneously, aiming at mutual enhancement between the
two tasks. Specifically, our framework comprises three components: a
denoising network, a segmentation network, and a fusion network facili-
tating feature-level interaction. Firstly, the denoising network mitigates
noise degradation. Subsequently, the segmentation network learns an
instance-level affinity prior, encoding vital spatial structural informa-
tion. Finally, in the fusion network, we propose a novel Instance-aware
Embedding Module (IEM) to utilize vital spatial structure information
from segmentation features for denoising. IEM enables interaction be-
tween the two tasks within a unified framework, which also facilitates
implicit feedback from denoising for segmentation with a joint training
mechanism. Through extensive experiments across multiple datasets, our
framework demonstrates substantial performance improvements over ex-
isting solutions. Moreover, our framework exhibits strong generalization
capabilities across different network architectures. Code is available at
https://github.com/zhichengwang-tri/EM-DenoiSeg.

Keywords: Instance Segmentation · Electron Microscopy Images ·
Image denoising.

1 Introduction

Large scale EM imaging plays a pivotal role in neural circuit reconstruction,
providing crucial insights for connectomics research [21]. However, the challenge of
poor signal-to-noise ratio (SNR) significantly undermines the quality of subsequent
segmentation tasks. While increasing dwell time and voltage can enhance SNR,
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this approach contradicts the demands of high data throughput and low sample
damage[5,17,8,22], as in connectomics studies[13].

Traditionally, image denoising and segmentation techniques have been de-
veloped and applied in isolation, with each task being approached separately
[20,7,27,1,6]. Efforts to integrate denoising and segmentation can be broadly
categorized into denoising-guided segmentation and segmentation-guided de-
noising methods. Denoising-guided segmentation methods focus on enhancing
the robustness of segmentation models by incorporating noise resilience during
training [4,28,19]. Conversely, segmentation-guided denoising methods utilize
advanced segmentation prior to optimize the network’s ability to reduce noise
while preserving structural details [15,24]. However, these approaches typically
yield unidirectional improvements. A recent work explores the synergy between
semantic segmentation and image denoising via alternate boosting [26], yet which
cannot handle instance segmentation. Despite progress in denoising [14,5,3] and
instance segmentation [10,11,16] in the field of EM, there is a gap in research
exploring their symbiotic relationship.

To fill this gap, we propose an instance-aware interaction framework to lever-
age the synergies of the two closely related tasks. Our framework consists of three
components: a denoising network, a segmentation network, and a fusion network.
We facilitate collaborative learning and promote task interaction at the feature
level. Initially, we use a denoising network to process noisy images, improving
segmentation performance by mitigating noise degradation. Subsequently, a seg-
mentation network predicts pixel affinity map encoding crucial spatial structure
information. In the fusion network, we introduce a novel Instance-aware Embed-
ding Module (IEM) to fuse semantic and image features in a structure-aware
manner, preserving cellular integrity during reconstruction. IEM computes simi-
larity between semantic and image features, facilitating cross-modal interaction
between heterogeneous representations. Lastly, our joint learning mechanism
enables the fusion network to provide implicit yet effective feedback to the affinity
learning process, thereby benefiting segmentation.

We conduct comprehensive experiments across multiple public benchmarks,
demonstrating substantial performance improvements over existing solutions. For
instance, we achieve an average reduction in VOI by 0.116 for segmentation and
an increase in PSNR by 0.320dB for denoising on the AC4 dataset under two noise
types. Furthermore, our framework exhibits robust generalization capabilities
across various network architectures.

In summary, our contributions are threefold: 1) We present the first unified
framework for joint EM image denoising and instance segmentation, leveraging
synergies between the two tasks. 2) We introduce a novel instance-aware embed-
ding module that integrates segmentation prior to enhance the performance of
both denoising and segmentation through interaction design. 3) Extensive exper-
iments validate the superiority of our framework over existing solutions in both
denoising and segmentation performance across multiple datasets, demonstrating
robust generalization capabilities.
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2 Instance-aware Interaction Framework

2.1 Overview
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Fig. 1: The overview of the proposed instance-aware interaction framework. (a)
Given a noisy input image In, denoising is first performed to mitigate noise
degradation to obtain a coarse denoised image Ic. Then, a segmentation network
predicts affinity map Sp from this less noisy result. After segmentation, the affinity
map Sp is utilized as segmentation prior to guide the fusion process with the
coarse denoised image to get the final denoised image If . With post processing,
we obtain the final predicted segmentation map. (b)Detail of Instance-aware
Embedding Module (IEM).

As illustrated in Fig. 1(a), our instance-aware interaction framework comprises
three main components: a denoising network, a segmentation network, and a fusion
network. For a noisy input image In, preliminary denoising is first performed
via the denoising network to obtain a coarse denoised image Ic. Subsequently,
the segmentation network takes the coarse denoised image as input to produce
affinity map Sp. Finally, the affinity information predicted by the segmentation
network is used to guide the reconstruction process in our fusion network to
obtain the final denoising output If . At the same time, the affinity map predicted
by the segmentation network can be converted to the final instance segmentation
map by the Mutex [25] post-processing algorithm.

In our proposed framework, the denoising network and segmentation network
can be various network combinations. We implement a dual Unet architecture in
Table 1, 2, and 4. In Table 3, we expand the denoising network to DnCNN [27]
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and RIDNet [1], and the segmentation network to TransUNet [7] to show the
generalization capacity of our framework. Across all experiments, the comparison
solutions for both denoising and segmentation networks are the same with ours.

2.2 Instance-aware Embedding Module

Incorporating high-level prior into low-level denoising necessitates detailed con-
sideration of the gaps between the sources. To mitigate such discrepancies and
utilize semantics effectively, we propose a Instance-aware Embedding Module
(IEM) to enable the feature-level interaction, as shown in Fig. 1(b). IEM estab-
lishes connections between the segmentation network and the denoising network,
thereby facilitating the integration of these two heterogeneous tasks. In our
framework, we choose a Unet-like architecture [20] for the fusion network due to
its exceptional performance. The network is further augmented with two IEMs
that perform pixel-wise attention between image and semantic features to obtain
the fused features. We integrate two IEMs into the second and third layers of the
UNet encoder in order to enhance performance while conserving parameters. As
illustrated in Fig. 1(a), the coarse denoised image Ic is passed through a cascade
of convolution layers to extract feature representations. We utilize the predicted
affinity from the segmentation network as multi-scale segmentation prior. To
be specific, we take two semantic/image features (F (n)

s , F
(n)
i , n = 0, 1) with two

spatial resolutions (H/22+n, W/22+n), with H and W denoting the height and
width of the input image, which are then fused as refined output feature F

(n)
o

through IEM. Details of the fusion process are provided below.
To reconcile the discrepancies in channel dimensions and spatial resolutions

for the computation of attention, the affinity maps Sp undergo corresponding
convolutional transformation. After the transformation, we get the image fea-
ture F

(n)
i and semantic feature F

(n)
s with the same shape. Next, we adopt the

MultiHeadAttention [23] mechanism to compute an attention map, which is
then used to fabricate image feature F

(n)
i to get the refined image feature F (n),

F (n) = MultiHeadAttention(F (n)
s , F

(n)
i , F

(n)
i ). (1)

Then, we apply ReLU(·) to the refined image feature and add it with the input
image feature,

F (n)
o = ReLU(F (n)) + F

(n)
i , (2)

and the final image feature F
(n)
o is then sent to the next layer of the fusion

network. Finally, a bottleneck layer, followed by a decoder network reconstructs
the final denoised image If .

2.3 Joint Training Mechanism

We train our framework in an end-to-end manner. As shown in Fig. 1(a), for the
coarse denoised image Ic, we employ a restoration loss,

Lresc
= ∥Ic − Igt∥2, (3)
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where Igt is the clean image. For the predicted affinity Sp, we utilize a weighted
binary cross entropy loss for optimization,

Lseg = − 1
N

∑
wi [Sgt log(Sp) + (1 − Sgt) log(1 − Sp)] , (4)

where Sgt is the ground truth affinity. The final denoising result If is also
supervised by a restoration loss,

Lresf
= ∥If − Igt∥2. (5)

Distinct from existing solutions [15,19], we employ a joint training approach,
where the overall objection function is the combination of the above three losses,
which terms

Loverall = Lresc
+ αLseg + βLresf

, (6)
where α = 3, β = 50 are the hyper-parameters.

3 Experiments
3.1 Experimental settings
Datasets and metrics. We assess our method on two representative biomedical
datasets,including AC3/AC4 [12] and CREMI [9]. The AC3/AC4 dataset is im-
aged from the mouse somatosensory cortex, consisting of 256 and 100 consecutive
EM images of size 1024 × 1024 pixels, respectively. In our experiments, we utilize
256 slices from the AC3 dataset for training, and 100 slices from the AC4 dataset
for validation. The CREMI dataset, originating from the CREMI neuron segmen-
tation challenge in EM volumes, includes three manually labeled subvolumes, of
which CREMI-C contains the most challenging neuron types. Each subvolume
contains 125 image slices, originally at a resolution of 1250×1250, which are then
cropped to a standardized size of 1024 × 1024 pixels. We adopt the first 75 slices
for training, and the subsequent 50 slices for evaluation across three subvolumns.
We simulate two types of noise degradation. For film noise, we set the kernel size
to 5 and the maximum intensity to 1.5. For Gaussian-Poisson mixture noise, the
noise level of Gaussian noise is randomly set between 55 and 85, and the lambda
parameter of the Poisson component is set to a random number between 0.6 and
0.8. The noisy images are pre-processed to ensure all experimental noisy images
are the same. Across all experiments, we assume noise to be Gaussian-Poisson
mixture noise by default. We employ PSNR and SSIM for denoising evaluation,
and Variation of Information (VOI [18]) and Adapted Rand Error (ARAND [2])
for segmentation evaluation.
Comparison solutions. For each dataset, we train our framework and compare
it to three competing baselines for evaluation of segmentation and denoising
performance: a model trained purely for segmentation or denoising (referred to
as SEG-Only/Dn-Only), and a sequential scheme [19] that first trains a denoiser
and then the aforementioned segmentation network (referred to as Sequential),
and another scheme [15] that first initializes the network for segmentation in
the noiseless setting then trains the cascade of two networks in an end-to-end
manner while fixing the weights of segmentation network (referred to as DMS).
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Table 1: Quantitative comparison on CREMI dataset.

Method
CREMI-A CREMI-B CREMI-C

Denoising Segmentation Denoising Segmentation Denoising Segmentation
PSNR↑ SSIM↑ VOI↓ ARAND↓ PSNR↑ SSIM↑ VOI↓ ARAND↓ PSNR↑ SSIM↑ VOI↓ ARAND↓

DN-Only[20] 28.389 0.781 - - 28.137 0.759 - - 27.348 0.756 - -
SEG-Only[20] - - 1.208 0.251 - - 1.587 0.246 - - 1.665 0.235
DMS[15] 26.643 0.696 1.206 0.242 25.530 0.615 1.738 0.253 24.971 0.645 1.698 0.235
Sequential[19] 28.389 0.781 1.197 0.247 28.137 0.759 1.573 0.251 27.348 0.756 1.621 0.224
Ours 28.437 0.789 1.158 0.239 28.202 0.763 1.497 0.239 27.407 0.763 1.566 0.209

Table 2: Quantitative comparison on AC4 dataset. We additionally conduct
experiments on film noise degradation.

Method
Gaussian-Poission mixture Film
Denoising Segmentation Denoising Segmentation

PSNR↑ SSIM↑ VOI↓ ARAND↓ PSNR↑ SSIM↑ VOI↓ ARAND↓

DN-Only[20] 23.568 0.631 - - 25.101 0.725 - -
SEG-Only[20] - - 1.723 0.333 - - 1.562 0.303
DMS[15] 22.718 0.608 1.748 0.320 24.312 0.709 1.574 0.301
Sequential[19] 23.568 0.631 1.684 0.325 25.101 0.725 1.540 0.290
Ours 23.810 0.645 1.569 0.304 25.498 0.743 1.479 0.287

DMS SequentialDN-Only/ SEG-Only Ground TruthOursNoisy

DMS SequentialDN-Only/ SEG-Only Ground TruthOursNoisy

Fig. 2: Visual comparisons of different baselines on AC4 dataset. Our method
excels in preserving cellular details, as demonstrated by the more complete preser-
vation of vesicles. Moreover, our segmentation result exhibits greater structural
precision.

3.2 Quantitative and Qualitative Evaluations

The quantitative results on CREMI and AC4 are presented in Table 1 and Table 2
respectively. The experimental results demonstrate that while the Sequential
method yields certain segmentation improvement over the SEG-Only method,
the gains are marginal and the denoising network does not improve in this
approach due to its weights being frozen. The DMS method, while effective in



Joint EM Denoising and Segmentation with Instance-aware Interaction 7

Table 3: Quantitative comparison on the CREMI-C dataset across three different
network combinations.

Method
Unet+TransUNet DnCNN+TransUNet RIDNet+TransUNet

Denoising Segmentation Denoising Segmentation Denoising Segmentation
PSNR↑ SSIM↑ VOI↓ ARAND↓ PSNR↑ SSIM↑ VOI↓ ARAND↓ PSNR↑ SSIM↑ VOI↓ ARAND↓

DN-Only 27.097 0.744 - - 27.081 0.747 - - 27.068 0.745 - -
SEG-Only[20] - - 1.519 0.178 - - 1.519 0.178 - - 1.519 0.178
DMS[15] 24.358 0.566 1.617 0.205 24.205 0.548 1.675 0.222 23.708 0.492 1.649 0.214
Sequential[19] 27.097 0.744 1.509 0.180 27.081 0.747 1.511 0.174 27.068 0.745 1.516 0.175
Ours 27.240 0.754 1.488 0.174 27.242 0.758 1.461 0.169 27.183 0.753 1.461 0.172

DMS SequentialDN-Only/ SEG-Only Ground TruthOursNoisy

DMSSequentialDN-Only/ SEG-Only Ground TruthOursNoisy

Fig. 3: Qualitative comparisons on the CREMI-C dataset with denoising-
segmentation network combination being Unet-TransUNet. Our method excels
in maintaining the continuity of cell boundaries and shows better segmentation
accuracy.

certain natural image contexts, does not align with EM images with high-noise
and complex texture, and fails to improve both denoising and segmentation
performance. Our method consistently surpasses other methods in both low-level
denoising and high-level segmentation with a substantial margin. Additionally,
our method achieves significant improvements on CREMI-C and AC4 datasets,
which present higher segmentation challenges due to greater size disparities
compared to CREMI-A and CREMI-B. This indicates that our method is well-
suited for more challenging scenarios. In Fig. 2, we show the visual denoising
and segmentation results on AC4 dataset. Although the competing methods can
satisfactorily remove the noise, the proposed framework can better preserve the
subtle cellular structures such as the vesicles. Furthermore, the segmentation
result of the our framework is more structural and precise.

3.3 Generalization Evaluation

Generalization to different noise types. We extend our experiments to
add synthetic film noise on the AC4 dataset, as shown in Table 2, the results
corroborate the versatility of our method across different noise conditions.
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Table 4: The effectiveness of each component in our framework.

Method
AC4 CREM-C

Denoising Segmentation Denoising Segmentation
PSNR↑ SSIM ↑ VOI↓ ARAND↓ PSNR↑ SSIM↑ VOI↓ ARAND↓

w/o DN to SEG 23.785 0.642 1.617 0.308 27.249 0.754 1.653 0.242
w/o SEG to DN 23.268 0.611 1.647 0.333 26.030 0.708 1.632 0.235
Joint DN & SEG (Ours) 23.810 0.645 1.569 0.304 27.407 0.763 1.566 0.209

Generalization to different network architectures. In Table 3, we investi-
gate a variety of network combinations for denoising and segmentation. To be
specific, we utilize three distinct denoising networks: Unet [20], DnCNN [27], and
RIDNet [1]. For the segmentation network, TransUNet [7] is chosen due to its
exceptional segmentation capabilities. By comparing the results in Table 1 on
CREMI-C with the first column of Table 3, where the denoising network remains
constant but the segmentation network shifts from Unet to TransUNet, we note
an improvement in segmentation performance. Specifically, TransUNet achieves
a decrease in VOI from 1.665 to 1.519 (SEG-Only), and from 1.621 to 1.509
(Sequential). Our method further decreases this metric to 1.488, which suggests
our method generalizes beyond CNN architectures, indicating its potential for
generalization to more advanced architectural designs. Furthermore, as shown
in Table 3, our method boosts the performance of three established denoising
networks. In Fig. 3, we visualize the denoising and segmentation results for
the CREMI-C dataset with denoise-segmentation network combination being
Unet-TransUNet. Our method demonstrates superior preservation of cellular
integrity and yields more precise segmentation results. Due to the high memory
demands of transformer models, Table 3 adopts a block-testing strategy(256
×256), resulting in a marginal decline in denoising performance compared to
Table 1.

3.4 Ablation study

We conduct ablation studies on the AC4 dataset to prove the effectiveness of our
method from various aspects.
The effectiveness of denoising helping segmentation. We conduct experi-
ments without denoising network (i.e., w/o DN to SEG). In this paradigm, we
directly fuse the noisy image and predicted affinity in the fusion network. As
shown in Table 4, without denoising network, both the denoising performance and
segmentation performance slightly decrease. This demonstrates the rationality of
our coarse-to-fine denoising paradigm.
The effectiveness of segmenation helping denoising and implicit feed-
back with joint training. We also conduct experiments to assess the effective-
ness of the fusion network (i.e., w/o SEG to DN). The results in Table 4 clearly
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show that both denoising and segmentation quality significantly decrease without
fusion network.

4 Conclusion

In this work, we present an instance-aware interaction framework for joint denois-
ing and segmentation for EM images. Our method actively exploits the combined
advantages inherent in two interdependent tasks, yielding a synergistic improve-
ment that exceeds the outcomes achieved when addressing the tasks in isolation.
A novel Instance-aware Embedding Module is proposed to integrate segmentation
prior to assist low-level restoration. Further, two subtasks are mutually promoted
through interaction. Extensive experiments verify the superiority of our method
in both image denoising and segmentation.
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