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Abstract. Fundus Fluorescein Angiography (FFA) is a critical tool for
assessing retinal vascular dynamics and aiding in the diagnosis of eye
diseases. However, its invasive nature and less accessibility compared
to Color Fundus (CF) images pose significant challenges. Current CF
to FFA translation methods are limited to static generation. In this
work, we pioneer dynamic FFA video generation from static CF im-
ages. We introduce an autoregressive GAN for smooth, memory-saving
frame-by-frame FFA synthesis. To enhance the focus on dynamic le-
sion changes in FFA regions, we design a knowledge mask based on
clinical experience. Leveraging this mask, our approach integrates inno-
vative knowledge mask-guided techniques, including knowledge-boosted
attention, knowledge-aware discriminators, and mask-enhanced patch-
NCE loss, aimed at refining generation in critical areas and addressing
the pixel misalignment challenge. Our method achieves the best FVD of
1503.21 and PSNR of 11.81 compared to other common video generation
approaches. Human assessment by an ophthalmologist confirms its high
generation quality. Notably, our knowledge mask surpasses supervised
lesion segmentation masks, offering a promising non-invasive alternative
to traditional FFA for research and clinical applications. The code is
available at https://github.com/Michi-3000/Fundus2Video.

Keywords: Video Generation · Generative Adversarial Network · Au-
toregressive Generation · Retinal Fundus Photography · Fluorescence
Angiography.

1 Introduction

Fundus Fluorescein Angiography (FFA) is an essential examination in ophthal-
mology clinics, providing a dynamic view of retinal blood flow and lesion changes.
It offers critical insights into retinal circulatory dynamics, aiding in the identifi-
cation of conditions such as diabetic retinopathy, hypertensive retinopathy, and
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macular degeneration [13]. Unlike Color Fundus (CF) images, FFA videos cap-
ture the dynamic filling process and real-time changes in retinal vascular abnor-
malities with greater clarity and depth, thereby enhancing diagnostic precision
and facilitating a deeper understanding of disease progression and treatment re-
sponse. However, due to its invasive nature and potential side effects, FFA’s use
is limited for certain individuals. In contrast, CF photography is non-invasive,
readily available [27], and has been utilized in some deep-learning methods [6,21]
for disease diagnosis. Therefore, generating realistic FFA videos from CF images
holds significant research and application potential.

When considering the generative models for FFA synthesis, the majority of
existing methods [23,11,12,16,20] focus on specific phases, like the venous and
late phase, using various Generative Adversarial Networks (GAN). However,
they overlook the changes occurring throughout the entire FFA process, which
includes multiple phases. While some approaches [2] can generate multiple dis-
crete FFA images from different phases simultaneously, they still cannot capture
the fully dynamic changes of retinal structures and lesions. Capturing lesional
changes accurately is another challenge in FFA generation. While using lesion
labels for conditional supervision could potentially enhance image details, the
manual annotation of these labels is highly time-consuming and impractical for
segmenting all possible lesion changes. Additionally, the time-consuming nature
of FFA procedures makes it difficult to align FFA images precisely with CF im-
ages in clinical practice, due to blinking and movement, even with good patient
cooperation [4,7]. This misalignment poses a significant challenge for pixel-to-
pixel-based video generation processes.

To tackle these challenges, we propose a model leveraging an image-to-image
GAN framework, specifically pix2pixHD [25], to generate smooth and stable FFA
videos from single CF images autoregressively. Through clinical knowledge anal-
ysis of ground-truth FFA series, regions with significant lesion changes during
the early and late FFA series examination are lesional changes, reflecting the
damage in vascular or retinal pigment epithelium structure [3,28]. The larger
the changes, the more important they are. Leveraging this insight, we design a
knowledge mask that requires no additional manual labeling and enhances the
generation of regions with high variability. Using this mask, we introduce novel
knowledge mask-guided techniques into the baseline model to guide the model
to focus more on key regions during learning and generation. Specifically, we
propose a mask-enhanced patchNCE loss to address the pixel misalignment is-
sue. This model holds the potential to generate FFA videos from CF images to
other modalities and improve downstream tasks [1,22,19].

In summary, our research contributes as follows: 1. We are the first to gener-
ate dynamic FFA video directly from CF images, marking a significant advance-
ment in ophthalmic imaging. Specifically, we introduce Fundus2Video, an autore-
gressive GAN architecture tailored for frame-by-frame FFA video synthesis from
CF images. This architecture optimizes memory usage and ensures smooth out-
put. 2. We introduce a knowledge mask derived from clinical insights to enhance
focus on regions undergoing significant changes during dynamic FFA processes.
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Fig. 1. Proposed Fundus2Video. (a) The overall architecture. Generator G generates
one frame at a time, taking the output from the previous time step and the CF image
as input. During the training phase, unsupervised knowledge masks guide the entire
network. (b) The design of the mask-enhanced patchNCE loss.

This eliminates manual labeling and improves generation in areas like lesions and
blood vessels. 3. With this mask, we implement knowledge mask (KM)-guided
techniques. We introduce knowledge-boosted attention and knowledge-aware dis-
criminators for specific supervision on regions of lesion regions. To address the
pixel misalignment challenge between CF images and ground-truth FFA series
in critical areas, we employ a newly designed mask-enhanced patchNCE loss.

2 Methods

2.1 Overview

We aim to generate a realistic FFA video Ŷ from a given CF image x, with
the ground-truth FFA video during training represented as Y . Considering the
temporal nature of FFA series, we adopt an autoregressive GAN architecture to
capture temporal dependencies and generate coherent video sequences. An au-
toregressive GAN generates image samples sequentially, conditioning each new
image on previously generated images and additional inputs. In our context of
generating FFA videos from CF images, our autoregressive GAN, named Fun-
dus2Video, based on the image-to-image translation GAN pix2pixHD, sequen-
tially generates each frame of the FFA video, incorporating the CF image itself
and the preceding frames. Building upon the generator, discriminator, and loss
designs of pix2pixHD, our approach incorporates specific modifications to enable
autoregressive and smooth generation. The architecture is as shown in Fig. 1 (a).

To ensure smooth output in Fundus2Video, we incorporate multi-frame input
and smoothing techniques for longer temporal considerations. Specifically, we in-
put three consecutive frames from the ground-truth FFA series to the model in
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Fig. 2. The definition of the knowledge mask. Left: The unsupervised process of obtain-
ing the mask. The knowledge mask covers the same pathological areas as the expert-
labeled mask. Right: Generated results with and without the knowledge mask.

a sliding window fashion to provide longer temporal context for each generated
frame. Instead of generating each frame independently, we aggregate the gen-
erated frames over a sliding window and perform triple-frame averaging. This
approach smooths out abrupt transitions between frames and ensures continuity
in the generated video sequence.

2.2 Unsupervised Clinically Supported Knowledge Mask

The baseline Fundus2Video can generate smooth and continuous FFA videos.
However, it falls short of accurately depicting details like lesions and critical
structures as shown in Fig. 2 right, which are of utmost clinical importance. To
address this, we leveraged clinical insights to analyze ground-truth FFA videos,
which tell us regions undergoing significant morphological changes during the
FFA process often corresponded to crucial lesions or retinal structure areas that
pose challenges for the model. The theoretical basis is from [3]:

– During the FFA process, as the fluorescent dye flows through retinal ves-
sels, significant leakage always occurs around the lesions, leading to visible
differences between early and late stages.

Building upon this knowledge, we devised a simple binary mask by computing the
difference between the first frame (representing the arterial phase) and the last
frame (representing the late phase) and setting a specific threshold δ determined
through comparative experiments, which can be formulated as m = δ(Y0 −
YT), where Y0 represents the first frame of the ground-truth FFA video and YT
represents the last frame. The process is depicted in Fig. 2. Unlike supervised
lesion/structure segmentation masks, this knowledge mask requires no additional
manual annotation or segmentation model training. It can be easily derived from
raw data, making it simple yet effective.

2.3 Knowledge Mask-Guided Video Generation

Knowledge-boosted Attention. Some types of lesions may be challenging to
detect in CF images due to low contrast, leading to synthesized FFA slices lacking
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details in these areas. To address this limitation and improve the generator’s
ability to capture specific regions, we introduce additional supervision into the
learning process. Our approach, termed knowledge-boosted attention, involves
guiding the network’s attention toward focal regions during training. To quantify
this guidance, we define an attention loss LAtt as follows:

LAtt(A,m) =
1

n

∑
i

(Ai −mi)2. (1)

Here, m represents the knowledge mask described in Section 2.2. A denotes
the attention map obtained by element-wise multiplication of the semantic-rich
activation map fl from the last convolutional layer l in the generator and the
mask m. We then apply a rectified linear operation to A, resulting in A =
ReLU(fl ⊙m).

Mask-enhanced PatchNCE Losses. To address pixel misalignment in ground-
truth FFA series and CF images caused by motion artifacts during acquisition,
we introduce the PatchNCE loss [14], inspired by contrastive learning techniques
known for boosting model robustness against label noise. However, we observed
that the model’s primary focus should be on reducing jitter in clinically relevant
regions, such as lesions and vasculature, which are of greater clinical significance.
To further tackle this issue, we propose mask-enhanced PatchNCE losses as a
replacement for traditional PatchNCE losses. This method extends traditional
PatchNCE losses by incorporating a knowledge mask m, highlighting critical
regions within the FFA series. Mathematically, the proposed mask-enhanced
PatchNCE losses are based on the InfoNCE loss, which is defined as:

LInfoNCE(v, v
+, v−) = − log

 esim(v,v+)

esim(v,v+) +
∑N

j=1 e
sim(v,v−

j )

 . (2)

Here, v, v+, and v− represent the embeddings of the anchor, positive, and neg-
ative samples, respectively.

The mask-enhanced unsupervised PatchNCE (UP) loss compares the anchor
patch zŶ in the generated output with a corresponding positive patch zX from
the input CF image and negative patches z−X , under the guidance of knowledge
mask m. It is defined as:

LMasked UP = LInfoNCE(m⊙ zŶ ,m⊙ zX ,m⊙ z−X), (3)

where ⊙ denotes element-wise multiplication. In contrast, the mask-enhanced su-
pervised PatchNCE (SP) loss ensures consistency between generated and ground-
truth patches. It designates the corresponding patch in the ground-truth image
zY as positive, while non-corresponding patches z−Y are considered negatives. It’s
defined as:

LMasked SP = LInfoNCE(m⊙ zŶ ,m⊙ zY ,m⊙ z−Y ). (4)
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The illumination is shown in Fig. 1 (b). By integrating the knowledge mask
into the PatchNCE loss, our method directs the model’s focus during training,
improving its ability to capture clinically significant features.

Knowledge-aware Discriminators. We employ 3 discriminators D = {D1, D2, D3}
[9,25] with the same patchGAN architecture [10] to evaluate images at scales of
1, 0.5 and 0.25 for different receptive fields. The discriminator objective function
for Dk with generator G is given by:

LDk
(a, b,G(a)) = Ea,b[logDk(a, b)] + Ea[log(1−Dk(a,G(a)))], (5)

where a, b and G(a) are the input, ground-truth, and generated images.
However, solely discriminating the entire image may not ensure the authen-

ticity of lesion regions in generated FFA frames. Hence, we introduce discrim-
ination guided by knowledge across scales. By combining knowledge masks m
with corresponding FFA images, we tailor inputs for the discriminators to focus
on lesions. According to Eq. 5, the combined discriminator loss LGAN (G,Dk)
for scale k is defined as:

LGAN(G,Dk) = LDk
(x, y,G(x)) + LDk

(x⊙m, y ⊙m,G(x)⊙m), (6)

where ⊙ denotes element-wise multiplication, and x and y are the input CF
images and ground-truth FFA images, respectively.

Consequently, the final loss function is as follows:

L = λUPLMaskedUP + λSPLMaskedSP + λAttLAtt + λGANLGAN. (7)

3 Experiments

Dataset. Our dataset comprises 350 CF images and 18,180 corresponding FFA
images from 350 anonymous patients sampled from a large paired dataset. The
FFA images were obtained using Zeiss FF450 Plus and Heidelberg Spectralis
systems, with a resolution of 768×768 pixels. Meanwhile, the CF images were
captured by Topcon TRC-50XF and Zeiss FF450 Plus instruments, with resolu-
tions ranging from 1,110×1,467 to 2,600×3,200 pixels. The Institutional Review
Board approved the study.

Implementation Details. The final objective function (Eq. 7) was utilized to
train the generative model, with λUP , λSP , λAtt, and λGAN set to 1, 1, 4, and
2, respectively. The threshold δ for obtaining the knowledge mask was set to 45.
During training, each ground-truth FFA series produced 12 frames, with 4 slices
randomly selected from the vascular, venous, and late phases, respectively. Data
augmentation techniques including random cropping, scaling, and color augmen-
tation. The input images were resized to 512×512. Additionally, the model was
trained to randomly select either generated or ground-truth frames as input, en-
hancing its adaptability and robustness. We employed the Adam optimizer with
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Fig. 3. Qualitative comparison of the methods. Frames are sampled from the 12-frame
video. Areas in red boxes denote significant lesions. It can be observed that the KM-
guided Fundus2Video exhibits best performance in generating critical lesions.

beta1 = 0.5 and beta2 = 0.999, adjusting the learning rate every 50 iterations
using the PyTorch [17] lrscheduler. The initial learning rate was set to 2e-3,
with a batch size of 1. Training was conducted for 50 epochs on an NVIDIA
GeForce RTX3090. For evaluation, 70% of the data was reserved for training at
the patient level, while the remaining data was evenly split into validation and
test sets.

Evaluation Criteria. Our video evaluation criteria include Fréchet Video Dis-
tance (FVD) [24], Structural Similarity Index (SSIM) [26], Peak Signal-to-Noise
Ratio (PSNR) [8], and Learned Perceptual Image Patch Similarity (LPIPS) [29].
They measure feature distribution similarity, video structural similarity, recon-
struction quality, and perceptual similarity, respectively.

Model Comparisons. We evaluate Fundus2Video against existing image-to-
video translation methods, including the auto-encoder-based Seg2vid [15], and
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Table 1. Comparison of the methods. M stands for masks.

Models Mask Type Proposed Techniques FVD↓ SSIM↑ PSNR↑ LPIPS↓
PatchNCE
loss LP

Mask-enhanced
PatchNCE loss
LMasked P

Knowledge
-boost
attention LAtt

Knowledge
-aware
discrimitors

Seg2Vid[15] - - - - - 2302.15 0.2930 10.23 0.2451
Med-ddpm[5] - - - - - 2410.54 0.2305 10.59 0.2513
ConsistI2V[18] - - - - - 2108.33 0.2662 10.71 0.2498

Fundus2Video

Knowledge M ✗ ✗ ✗ ✗ 1804.25 0.3225 11.11 0.2213
Knowledge M ✓ ✗ ✗ ✗ 1611.21 0.3625 11.41 0.2162
Knowledge M ✗ ✓ ✗ ✗ 1527.94 0.3738 11.76 0.2093
Knowledge M ✗ ✗ ✓ ✗ 1701.30 0.3694 11.20 0.2133
Knowledge M ✗ ✗ ✗ ✓ 1664.42 0.3442 11.36 0.2166
GT Lesion Seg M ✓ ✓ ✓ ✓ 1586.35 0.3688 11.23 0.2136
Knowledge M ✓ ✓ ✓ ✓ 1503.21 0.3814 11.81 0.2001

the diffusion model-based Med-ddpm [5] and ConsistI2V [18]. Table 1 shows
our model’s superior performance across all metrics. Qualitative comparison in
Fig. 3 reveals clearer images and discernible lesion areas in our approach versus
others.

Ablation Studies. Additionally, we conduct comprehensive ablation studies
to assess the effectiveness of our proposed knowledge mask and related tech-
niques, detailed in the latter part of Table 1 and Fig. 3. Firstly, we show that
our designed mask-enhanced patchNCE loss, knowledge-boost attention, and
knowledge-aware discriminators, when combined with mask information, out-
perform the baseline Fundus2Video. Moreover, our mask-enhanced patchNCE
loss yields better results than patchNCE loss alone. Secondly, by replacing the
knowledge mask with the ground-truth lesion segmentation mask for comparison,
we observe that utilizing our KM-guided techniques can enhance performance
even with the lesion segmentation mask. However, our knowledge mask yields
better results without the need for additional training or labeling efforts.

Human Assessment. An ophthalmologist reviewed the results of all methods
in Table 1 and found that our Fundus2Video significantly outperformed oth-
ers. Then the ophthalmologist conducted a quality assessment of 50 randomly
selected FFA videos generated by Fundus2Video from the test set, evaluating
them based on their corresponding CF images and ground-truth FFA videos.
The evaluation focused on vascular perfusion, lesion dynamics, overall coherence,
stability, and presence of artifacts. Scores ranged from 1 to 5, with 1 indicating
excellent quality and 5 indicating very poor quality. Our model received a score
of 2.12 with a standard deviation of 1.07, indicating good overall quality of the
generated videos.

4 Conclusion

In this study, we propose Fundus2Video, which pioneers dynamic FFA video gen-
eration from static CF images using an autoregressive GAN architecture. With a
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knowledge mask derived from clinical experience, we enhance focus on dynamic
lesion regions, outperforming supervised lesion segmentation masks. Our method
incorporates knowledge-boosted attention, knowledge-aware discriminators, and
mask-enhanced patchNCE loss to address challenges in lesion generation and
pixel misalignment. Fundus2Video emerges as a promising alternative to tradi-
tional FFA, surpassing recent state-of-the-art approaches with its non-invasive,
intuitive, and dynamic features.
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