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Abstract. We focus on the problem of Unsupervised Domain Adapta-
tion (UDA) for breast cancer detection from mammograms (BCDM) prob-
lem. Recent advancements have shown that masked image modeling
serves as a robust pretext task for UDA. However, when applied to cross-
domain BCDM, these techniques struggle with breast abnormalities such
as masses, asymmetries, and micro-calcifications, in part due to the typ-
ically much smaller size of region of interest in comparison to natu-
ral images. This often results in more false positives per image (FPI)
and significant noise in pseudo-labels typically used to bootstrap such
techniques. Recognizing these challenges, we introduce a transformer-
based Domain-invariant Mask Annealed Student Teacher autoencoder
(D-MASTER) framework. D-MASTER adaptively masks and reconstructs multi-
scale feature maps, enhancing the model’s ability to capture reliable tar-
get domain features. D-MASTER also includes adaptive confidence refine-
ment to filter pseudo-labels, ensuring only high-quality detections are
considered. We also provide a bounding box annotated subset of 1000
mammograms from the RSNA Breast Screening Dataset (referred to as
RSNA-BSD1K) to support further research in BCDM. We evaluate D-MASTER
on multiple BCDM datasets acquired from diverse domains. Experimental
results show a significant improvement of 9% and 13% in sensitivity at 0.3
FPI over state-of-the-art UDA techniques on publicly available benchmark
INBreast and DDSM datasets respectively. We also report an improvement
of 11% and 17% on In-house and RSNA-BSD1K datasets respectively. The
source code, pre-trained D-MASTER model, along with RSNA-BSD1K dataset
annotations is available at d-master/webpage.

1 Introduction

Deep neural networks (DNNs) have achieved noteworthy breakthroughs in medi-
cal image analysis [9,31,30,1,37,11] and have shown exceptional performance in
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Fig. 1: (a) and (b) depict false positive predictions by current teacher student models
in cross-domain BCDM. Red boxes indicate ground truth, yellow boxes show MRT [43]
predictions, and green boxes indicate predictions from D-MASTER. As shown in (c), our
approach effectively mitigates the domain gap and makes accurate predictions.

specific tasks such as breast cancer detection on mammography. However, they
suffer from relatively lower performance when there is a distribution gap between
the training data and the deployed environment. This effect is particularly pro-
nounce in medical imaging problems, due to relatively smaller size, and fewer
number of annotated datasets, which does not allow a DNN model to capture
domain-invariant features. This affects the generalisability of the network across
different geographies, different machines, techniques, and protocols of image ac-
quisition. While images in a target population may be available to fine-tune a
model, annotations are usually more expensive due to unavailability of a medical
expert. Thus, in medical imaging problems, there is a strong need for effective
methodologies in unsupervised domain adaptation (UDA).

UDA has been extensively studied in case of natural images, utilizing tech-
niques such as adversarial learning [21],pseudo-label training [6,21,40], image-to-
image translation [40], graph reasoning [20], and adaptive mean Teacher train-
ing [6], improving domain adaptation efficiency of object detectors. Recently
multiple works focused on using Mask autoencoders (MAE) methods in large-scale
pretraining for vision models, involving masking parts of input and reconstruct-
ing them [12,33]. However, these approaches overlook domain shifts. Alterna-
tively, widespread utilization of Teacher-Student models, wherein a Teacher pro-
vides pseudo-labels for target domain (unlabeled images) to supervise a Student
model, leads to notable adaptation improvements [40,43]. However, these tech-
niques face the challenge of incorrect predictions and excessive false positives per
image due to low-quality pseudo-labels, particularly for medical imaging prob-
lems. Pseudo-labels are filtered from the Teacher model’s outputs based on the
confidence score threshold. Selecting numerous pseudo-labels with low thresh-
olds leads to inclusion of incorrect predictions, and compromising performance.
Conversely, higher thresholds yield a limited number of pseudo-boxes, result-
ing in sub-optimal supervision. Existing Teacher-Student models often produce
pseudo-labels riddled with errors and false positives, as illustrated in Fig. (1a)
and Fig. (1b). Though [21,40,43] utilize techniques like adversarial alignment,
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weak-strong augmentation, and selective retraining of Student model to minimize
the false positives in pseudo-labels, these approaches fail on medical images.
Contributions of this work. We note that screening mammography inherently
differs from natural images, with breast abnormalities such as masses, asym-
metries, and micro-calcifications, typically much smaller in comparison to the
salient objects present in natural images, emphasizing the need for approaches
specific to this problem. To address these issues, we make following contributions
in this work: (1) We introduce D-MASTER, a transformer-based Domain-invari-
ant Mask Annealed Student Teacher Autoencoder Framework for cross-domain
breast cancer detection from mammograms (BCDM), integrating a novel mask-an-
nealing technique and adaptive confidence refinement module. Unlike pretraining
with mask autoencoders (MAEs) [12], leveraging massive datasets for training and
then fine-tuning on smaller datasets, we present a novel learnable masking tech-
nique for the MAE branch that generates masks of different complexities, which
are reconstructed by the DefDETR [44] encoder and decoder. Our approach, as a
self-supervised task on target images, enables the encoder to acquire domain-in-
variant features and learn better target representations as shown in Fig. (1c).
(2) In Teacher-Student model, since the pseudo-label noise generated by the
Teacher affects the Student model severely, we propose an adaptive confidence
refinement module that progressively restricts the confidence metric for pseu-
do-label filtering. During the initial adaptation phase, soft confidence is applied
allowing more pseudo-labels to learn better target representations. Subsequently,
as confidence gradually increases, the focus shifts towards enhancing detection
accuracy by prioritizing more reliable pseudo-labels. (3) We release a bounding
box annotated subset of 1000 mammograms from the RSNA Breast Screening
Dataset (referred to as RSNA-BSD1K) to support further research in BCDM. (4) We
setup a new state-of-the-art (SOTA) in detection accuracy for UDA settings. We
report a sensitivity of 0.74 on INBreast [25] and 0.51 on DDSM [18] at 0.3 FPI,
compared to 0.61 and 0.44 using current SOTA respectively. Significant perfor-
mance gains are also observed on our in-house and RSNA-BSD1K datasets.

2 Proposed Method

Problem Formulation. For a cross domain BCDM problem in a UDA setting, we
have an annotated source dataset Ds = {(xs

i , y
s
i )}

Ns
i=1 with Ns samples, where

each sample x represents a mammogram, and y = (b, c) denotes annotation for
malignancy, including bounding box b and the corresponding malignant class
c. If the sample is benign, there is no corresponding bounding box annotation.
Moreover, we have an unannotated target dataset Dt = {xt

i}
Nt
i=1 with Nt samples.

The aim is to improve the performance on target data by training a model solely
on source dataset Ds and target images Dt (target labels are not avaliable).

2.1 Proposed Architecture

Recent advances [21,40,43] in UDA use an Adaptive Teacher-Student model with
adversarial alignment and selective retraining to achieve domain adaptation. Our
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Fig. 2: Architecture of proposed Domain-invariant Mask Annealed Student Teacher
Autoencoder (D-MASTER) framework

proposed D-MASTER architecture follows the same style, and is shown in Fig. (2).
We utilize Deformable DETR [44] (DefDETR) detector, pre-trained on the source
domain, Ds, as the backbone in our architecture.
Teacher-Student model. The model comprises of two main branches: a target-
specific Teacher and a cross-domain Student. The Teacher processes weakly aug-
mented images exclusively from target domain (Dt), while the Student handles
strongly augmented images from both domains (Ds and Dt). Throughout the
training process, the Teacher model generates pseudo-labels for Dt, which are
then utilized to train the Student model. Additionally, the Student updates its
acquired knowledge to the Teacher through exponential moving average (EMA)
after each iteration, θT ← αθT + (1− α)θS . For source domain, supervised loss
Lsup is calculated on xs using ground truth annotations same as [44], whereas for
target domain xt, we use unsupervised loss, Lunsup, which is the cross-entropy
loss with Teacher-generated pseudo-labels.
Discriminators for adversarial alignment. As annotations are solely present
for the source images (Ds), both the Teacher and the Student can be biased to-
wards Ds during the learning process. To mitigate this [21,43] introduce adver-
sarial learning in the Teacher-Student framework. To achieve adversarial learn-
ing, Domain discriminators (D) are used after certain components to predict
the domain label of the features, updated by binary cross-entropy loss, Ldis.
In D-MASTER, the discriminators are placed after the backbone, DefDETR en-
coder, and decoder, as shown in Fig. (2). We use standard adversarial loss,
Ladv = maxDs minDt Ldis. Gradient Reverse Layers are used for min-max opti-
mization. The overall objective of the Student (Lteach) is the sum of supervised
(Lsup), unsupervised (Lunsup), and adversarial (Ladv) losses.
Selective retraining. Transformer-based models tend to over-fit on target data
during such cross-domain training, especially when noisy annotations are in-
cluded. As the Teacher model undergoes continuous updates via EMA from the
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Algorithm 1 Mask Annealing updating process
1: Input: weight parameters (θT ), masking ratio (µt), step (η),

warm restart epoch (Ti), max epochs (Tmax), epochs since last
restart (Tc), ranges for the steps (ηi

min, ηi
max)

2: Data: bst = {(xs
i )}Ns

i=1
∪ {xt

j}
Nt
j=1

▷ Batch

3: Initialize hyperparameters: µ = 0.3, step η = 0.01, batch size
b = 16, max epochs Tmax = 40, initializing parameters of network
θT using source trained parameters.

4: for i in 1 to Tmax do

5: ηt = ηi
min + 1

2
(η − ηi

min)

(
1 + cos

(
Tc
Ti

π

))
cosine annealing

6: L = Lmask(bst, θT ) ▷ Computing loss for batch bst

7: ∇θL = ∇θft(bst, θT ) ▷ Computing gradients

8: θ′T = θT − ηt · ∇θL ▷ Updating parameters

9: µ = µ + ηt if L < L̄, otherwise µ = µ − ηt ▷ Updating µ

10: i = i + 1 ▷ Incrementing epoch
11: Return parameters θ′T , µ′. Valid Pseudo-labels

Pseudo-labels

Hard ThresholdingSoft Thresholding

Gradual Refinement

Fig. 3: Mask Annealing Algorithm (left) and Adaptive Confidence Refinement (right)
flowchart depicts the gradual transition of confidence threshold from soft to hard.

Student, it could also be affected and produce incorrect and limited pseudo-
labels. To address this, we follow [43], and adopt selective retraining mechanism
to help Student jump out of local optimums biased to wrong pseudo-labels.
In D-MASTER, the backbone and encoder of the Student are re-initialized with
source-trained weights θs after certain epochs.

2.2 Mask Annealed Autoencoder

DefDETR encoder in our proposed D-MASTER architecture uses multi-scale feature
maps {Xi ∈ RCi×Hi×Wi}Ki=1, where K represents the number of feature map
layers. We propose a novel mask annealing technique to mask the feature maps
{mi ∈ {0, 1}Hi×Wi}Ki=1 with initial masking ratio µt, implying that µt% of the
pixels in the feature map are masked (set to zero). The easy-to-hard mask an-
nealing curriculum, as shown in Fig. (3)(left), is devised to adaptively mask
patches to make the reconstruction task easier or difficult. During training, the
step ηt is optimized using stochastic gradient descent with warm restarts [23] as:

ηt = ηimin +
1

2
(ηimax − ηimin)

(
1 + cos

(
Tc

Ti
π

))
. (1)

Here, ηimin and ηimax denote the ranges for the steps, Tc reflects the number of
iterations has been completed since the last restart and Ti is the no of iterations
when a new warm restart of SGD is to be performed,
Reconstruction. Following the masking of feature maps, deformable attention
is applied to further encode them by the DefDETR encoder [44]. In the encoder’s
output features, we use a shared mask query qm to fill the masked portion and
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Datasets Model Name Venue R@0.05 R@0.1 R@0.3 R@0.5 R@1.0 R@2.0 Accuracy F1-score

SFA[36] MM’21 0.05 0.12 0.19 0.24 0.31 0.39 0.336 0.287
UMT[6] CVPR’21 0.02 0.07 0.11 0.16 0.25 0.37 0.308 0.235
D-Adapt[14] ICLR’22 0.08 0.13 0.19 0.27 0.36 0.44 0.335 0.215
AT[21] CVPR’22 0.13 0.18 0.22 0.40 0.52 0.66 0.654 0.314

DDSM [18] to H2FA[38] CVPR’22 0.05 0.09 0.15 0.21 0.28 0.36 0.291 0.225
In-house AQT[13] IJCAI’22 0.08 0.11 0.18 0.26 0.33 0.47 0.378 0.306

HT[7] CVPR’23 0.12 0.17 0.32 0.42 0.63 0.75 0.316 0.260
ConfMIX[24] WACV’23 0.09 0.13 0.19 0.30 0.46 0.53 0.517 0.218
CLIPGAP[34] CVPR’23 0.11 0.14 0.31 0.40 0.55 0.67 0.723 0.348
MRT[43] ICCV’23 0.13 0.17 0.34 0.46 0.55 0.70 0.816 0.363
Ours 0.19 0.26 0.43 0.54 0.68 0.78 0.835 0.392

SFA [36] MM’21 0.03 0.04 0.13 0.23 0.35 0.53 0.241 0.338
UMT[6] CVPR’21 0.01 0.05 0.09 0.15 0.21 0.25 0.204 0.319
D-Adapt[14] ICLR’22 0.11 0.23 0.29 0.45 0.59 0.65 0.731 0.414
AT[21] CVPR’22 0.19 0.27 0.38 0.65 0.75 0.78 0.721 0.512

DDSM [18] to H2FA[38] CVPR’22 0.13 0.20 0.32 0.45 0.52 0.58 0.575 0.312
INBreast [25] AQT[13] IJCAI’22 0.11 0.24 0.37 0.44 0.57 0.64 0.680 0.349

HT[7] CVPR’23 0.17 0.31 0.49 0.61 0.69 0.73 0.704 0.362
ConfMIX[24] WACV’23 0.19 0.29 0.47 0.58 0.73 0.75 0.737 0.409
CLIPGAP[34] CVPR’23 0.15 0.30 0.55 0.61 0.75 0.79 0.712 0.445
MRT[43] ICCV’23 0.16 0.31 0.54 0.64 0.72 0.77 0.789 0.489
Ours 0.25 0.3 0.61 0.70 0.82 0.82 0.808 0.524

SFA [36] MM’21 0.01 0.03 0.09 0.16 0.19 0.22 0.425 0.271
UMT[6] CVPR’21 0.05 0.09 0.11 0.15 0.21 0.26 0.362 0.216
D-Adapt[14] ICLR’22 0.04 0.06 0.12 0.18 0.29 0.36 0.471 0.263
AT[21] CVPR’22 0.16 0.21 0.28 0.35 0.42 0.48 0.712 0.338

In-house to H2FA[38] CVPR’22 0.03 0.07 0.13 0.18 0.26 0.35 0.486 0.236
INBreast [25] AQT[13] IJCAI’22 0.02 0.10 0.17 0.25 0.33 0.39 0.569 .318

HT[7] CVPR’23 0.07 0.11 0.18 0.26 0.31 0.38 0.648 0.297
ConfMIX[24] WACV’23 0.03 0.08 0.15 0.23 0.28 0.32 0.527 0.285
CLIPGAP[34] CVPR’23 0.06 0.13 0.19 0.28 0.36 0.41 0.621 0.310
MRT[43] ICCV’23 0.32 0.43 0.52 0.69 0.72 0.78 0.779 0.352
Ours 0.46 0.53 0.71 0.75 0.79 0.82 0.812 0.395

SFA[36] MM’21 0.02 0.05 0.09 0.12 0.15 0.19 0.501 0.430
UMT[6] CVPR’21 0.04 0.06 0.10 0.13 0.19 0.21 0.528 0.287
D-Adapt[14] ICLR’22 0.03 0.07 0.09 0.14 0.18 0.27 0.518 0.329
AT[21] CVPR’22 0.18 0.24 0.29 0.36 0.39 0.48 0.698 0.601

In-house to H2FA[38] CVPR’22 0.02 0.07 0.13 0.19 0.23 0.28 0.632 0.325
RSNA-BSD1K AQT[13] IJCAI’22 0.07 0.12 0.17 0.25 0.31 0.38 0.574 0.415

HT[7] CVPR’23 0.09 0.15 0.19 0.28 0.37 0.45 0.621 0.539
ConfMIX[24] WACV’23 0.18 0.21 0.28 0.33 0.41 0.48 0.578 0.413
CLIPGAP[34] CVPR’23 0.12 0.18 0.23 0.27 0.36 0.42 0.769 0.586
MRT[43] ICCV’23 0.28 0.37 0.44 0.53 0.68 0.71 0.812 0.524
Ours 0.36 0.41 0.58 0.65 0.70 0.79 0.888 0.653

Table 1: Comparison with state of the art UDA techniques. Fig. 4: FROC curves

send it to the MAE decoder Ds to reconstruct the masked portion. Given that
the last layer of the feature maps, denoted as XK , encapsulates all the semantic
information [44], we solely reconstruct this layer to expedite faster convergence
and lower computational overhead. The decoder’s last layer consists of a linear
projection, with output channels matching those of XK . Finally, to supervise the
reconstruction loss Lmask, we compute the mean square error between output
reconstructed feature maps (X̂K) and original feature maps (XK). Hence, the
overall objective of the Student model L is sum of the Teacher based loss (Lteach),
and the reconstruction loss (Lmask).

Adaptive confidence refinement (ACR). The correctness of the pseudo-
labels is tightly related to confidence used for filtering. In the early stages of
learning, confidence tends to be less reliable due to large domain shift. Therefore,
we propose a gradual transition of confidence from soft to hard manner (Fig. (3)
(right)). To this end, we start with the soft confidence Cs, and as iterations
continue, we progressively assign more importance to hard confidence Ch with
a shifting weight δ, s.t.: C = (1 − δ) · Cs + δ · Ch. The weight δ is determined
as: δ = 2 · 1

1+exp(−α t
e )
− 1, where, t denotes current iteration, e denotes total

iterations,and α is a hyperparameter. At each iteration, a pseudo-label from the
Teacher is considered valid (used to compute Lunsup) if its confidence exceeds C.
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Source AT [21] MA ACR R@0.025 R@0.05 R@0.1 R@0.3 R@0.5 R@0.9
✓ 0.19 0.34 0.43 0.57 0.65 0.69
✓ ✓ 0.39 0.46 0.53 0.71 0.75 0.78
✓ ✓ 0.28 0.35 0.42 0.61 0.64 0.69
✓ ✓ ✓ 0.30 0.42 0.51 0.61 0.70 0.71
✓ ✓ ✓ 0.37 0.46 0.59 0.72 0.75 0.75
✓ ✓ ✓ ✓ 0.39 0.51 0.53 0.71 0.75 0.79

Table 2: Ablation study to understand impact of each proposed module for
In-house to INBreast adaptation. “Source” denotes the source-only trained model,
“Baseline” the basic teacher-student architecture, “MA” the proposed mask annealing
technique, and “ACR” denotes adaptive confidence refinement module. The figures
from left to right correspond to qualitative results from row 1 to row 6 respectively.
Red boxes denote the ground truth, and blue boxes show the predicted regions.

3 Experiments and Results

Dataset and evaluation methodology. We evaluate our proposed D-MASTER
on INBreast [25], DDSM [18], RSNA [2], and in-house datasets. Our in-house diag-
nostic dataset contains 3,501 mammograms, including both CC and MLO views,
with 615 malignancies. The original RSNA dataset [2] consists of 54,706 screening
mammograms, containing 1,000 malignancies from 8,000 patients. We curated a
subset named RSNA-BSD1K, comprising 1,000 mammograms with 200 malignant
cases, annotated at the bounding box level by 2 expert radiologists. Note that
unlike single domain detection techniques which use a particular subset of the
dataset for training and remaining for testing, our technique does not require
any labels from the target dataset. Hence, for our problem, it seems logical to
use the whole dataset during training and testing, and not just the respective
train or test split. Hence, when reporting results for “Dataset A to Dataset B”,
we imply that the model is trained on Ds = A (whole dataset for the training),
and adapted for Dt = B (whole dataset for UDA and testing).
Evaluation metric. We use Free-Response Receiver Operating Characteristic
(FROC) curves [8] for reporting our results. The curves provide a graphical repre-
sentation of sensitivity/recall values at different false positives per image (FPI).
We follow related works in this area [27] and consider a prediction as true pos-
itive if the center of the predicted bounding box lies within the ground-truth
box.
Implementation details. We employ a 2-layer asymmetric decoder [12] in the
MAE with an initial mask ratio of 0.2. Network optimization uses the Adam op-
timizer [17] with an initial learning rate of 2 × 10−4, and a batch size of 16.
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Table 3: Left: Demonstrating superiority of our approach for natural image setting with
Sim10K [16] as the source, and Cityscapes [5] as the target dataset. Right: Comparing
object detectors proposed for natural images with our method.

Detector Venue R@0.1 R@0.3 R@0.5 Acc F1 Detector Venue AP(car)
FRCNN [28] NIPS’15 0.25 0.40 0.45 0.828 0.297 FRCNN [28] NIPS’15 39.4
YOLO-v5 [10] ICCVW’21 0.26 0.34 0.36 0.828 0.311 SSAL [26] NIPS’21 42.5
Cond.DETR [10] ICCV’21 0.30 0.47 0.51 0.833 0.430 DA-Faster [4] CVPR’18 41.9
Dab-DETR [22] ICLR’22 0.43 0.57 0.63 0.843 0.552 MeGACDA [35] CVPR’21 44.8
Dab DEF [22] ICLR’22 0.40 0.46 0.50 0.830 0.546 ViSGA [29] ICCV’21 49.3
DN-DETR [19] CVPR’22 0.38 0.47 0.58 0.828 0.393 AQT [13] IJCAI 2022 53.4
DN DEF. [19] CVPR’22 0.39 0.44 0.47 0.825 0.526 DA-Detr [42] CVPR’23 54.7
YOLO-V8 [15] UT’23 0.06 0.08 0.10 0.258 0.346 KTNet [32] ICCV’21 50.7
FocalNET [39] NIPS’23 0.56 0.69 0.74 0.865 0.641 ConfMix [24] CVPR’23 56.3
DINO [41] ICLR’23 0.35 0.54 0.65 0.820 0.275 PT [3] PMLR’22 55.1
Ours - 0.53 0.71 0.75 0.879 0.773 Ours - 61.9

Data augmentation techniques include random horizontal flips, high-resolution
mammograms (4K) for weak augmentation, Gaussian blurring, low-resolution
mammograms (1K), and random contrast change for strong augmentations. De-
tailed information is in supplementary Section 4.
Comparison with SOTA techniques. Table 1 shows the comparative results
with other domain adaptation techniques, including those proposed for natural
images. Fig. (4) depicts corresponding FROC curves comparison with the near-
est competitors only (to avoid clutter). Table S3 in the supplementary show
quantitative results for more datasets.
Ablation Study. Our ablation study include three experiments: (1) Table 2
provides the quantitative and qualitative analysis to understand the impact of
various proposed components in the proposed D-MASTER architecture. (2) Our
core contributions are not specific to medical imaging, and are expected to be
useful for natural images as well. Hence, we compare our model with existing do-
main adaptive object detection (DOAD) techniques when trained on Sim10K [16]
data and unsupervised domain adaptation on Cityscapes [5] dataset. Since our
model is designed for a single label (presence or absence of breast cancer), hence
we perform this experiment only for single label, “car” on the two datasets. Ta-
ble 3(left) shows the result. (3) To understand the benefit of overall solution
with respect to recent SOTA object detection techniques, in Table 3(right), we
show the result when these techniques are trained on in-house dataset and di-
rectly tested on INBreast without any domain adaptation.

4 Conclusion

Lack of generalisability of Deep Neural Networks for breast cancer detection, on
the data obtained across different geographies, with different distributions, ac-
quired on different machines and imaging protocols, is a big barrier towards their
clinical adoption. In this paper, we address this problem by proposing a new un-
supervised domain adaptation framework, which can help such models adapt to
newer sample distributions. Experimental results, carried out with four datasets
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from different domains, demonstrated the superior performance over other com-
peting methods. We hope that our work will improve the clinical adoption of
automated breast cancer detection models with improved generalization using
our technique.
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