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Abstract. Diffusion Probabilistic Models have recently attracted sig-
nificant attention in the community of computer vision due to their out-
standing performance. However, while a substantial amount of diffusion-
based research has focused on generative tasks, no work introduces diffu-
sion models to advance the results of polyp segmentation in videos, which
is frequently challenged by polyps’ high camouflage and redundant tem-
poral cues. In this paper, we present a novel diffusion-based network
for video polyp segmentation task, dubbed as Diff-VPS. We incorporate
multi-task supervision into diffusion models to promote the discrimina-
tion of diffusion models on pixel-by-pixel segmentation. This integrates
the contextual high-level information achieved by the joint classification
and detection tasks. To explore the temporal dependency, Temporal Rea-
soning Module (TRM) is devised via reasoning and reconstructing the
target frame from the previous frames. We further equip TRM with a
generative adversarial self-supervised strategy to produce more realistic
frames and thus capture better dynamic cues. Extensive experiments are
conducted on SUN-SEG, and the results indicate that our proposed Diff-
VPS significantly achieves state-of-the-art performance. Code is available
at https://github.com/lydia-yllu/Diff-VPS.

Keywords: Diffusion model · Video polyp segmentation · Multi-task
learning.

1 Introduction

Colorectal cancer (CRC) has become the second leading cause of cancer-related
deaths worldwide, accounting for approximately 10% of all cancer cases. By 2040
the burden of colorectal cancer will increase to 3.2 million new cases per year
(an increase of 63%) and 1.6 million deaths per year (an increase of 73%) [3,23].
Colonoscopy plays a crucial role in detecting polyps and serves as a screening
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tool for CRC. However, there still exists a high missing rate in the diagnosis and
treatment process. Recently, emerging methods have utilized deep learning tech-
niques to automatically detect polyps in video, from popular convolutional neu-
ral networks to attention mechanism [19,17,8,10,28,18,1,29]. Nevertheless, video
polyp segmentation (VPS) always poses the ill-posed bottleneck, i.e., the high
camouflage of polyps in the camera, more specifically, the intrinsic complexity of
polyps (shape and color variability, fuzzy boundaries) and the external shooting
conditions (low boundary contrast, specular reflection, artifacts). Also, the tem-
poral cues in colonoscopy videos require to be finely explored, which refers to the
effective utilization of long-term temporal characteristics within a video dataset.
While parts of the above methods achieved significant progress in segmenting
polyps in videos, there still exists great potential to be explored considering their
failure cases and limited discriminative ability.

Diffusion models have shown impressive performance in many vision tasks,
such as image deblurring [12], super-resolution [14,5], and anomaly detection [24,4].
The denoising diffusion probabilistic model (DDPM) [7] is a generative model
based on a Markov chain. Simulating a diffusion process, DDPM captures the
data distribution as it guides the input data towards a predefined target distri-
bution, i.e. Gaussian distribution. By representing the diffusion process of image
intensity values over successive iterations, diffusion models adeptly grasp the in-
trinsic structure and texture within images, facilitating the distinct segregation
of regions of interest from the background [2]. While several pioneers [22,25,21,27]
applied DDPM to medical image classification and segmentation, there is no
diffusion-based work on medical video lesion segmentation.

Motivated by the nature of diffusion models [11], in this paper, 1) we
present the first diffusion network, dubbed as Diff-VPS, for the VPS
task. Polyps can be diagnosed into different categories (hyperplastic polyp, in-
vasive carcinoma, etc.) depending on the size and morphological features [10].
Inspired by this, 2) we design the Multi-task Diffusion Model where
classification and detection tasks are performed simultaneously to im-
prove the discrimination on the segmentation task. Such supervision
significantly advances the discriminative and generalizable ability of diffusion
models by high-level semantic information. Furthermore, to capture the dynamic
appearance and maintain the temporal coherence in segmenting polyps, 3) we
devise a Temporal Reasoning Module by reconstructing the target
frame from the previous temporal information and employing an ad-
versarial self-supervised strategy. Extensive experiments are conducted on
the SUN-SEG dataset. The superior performance on seen and unseen videos
validates the effectiveness and versatility of our Diff-VPS.

2 Method

Figure 1 shows the schematic illustration of our network for video polyp seg-
mentation. Given the target frame Ii and its previous frames {Ii−δ, .., Ii−1}, we
first encode the pixel-level mask M0

i of Ii into the latent space, and then ap-
ply diffusion forward process to its latent feature z0i by the randomly sampled
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Fig. 1: Overview of our Diff-VPS framework. While the TRM extracts
multi-scale temporal features Rj from the previous frames, the image encoder
learns the spatial counterpart Sj . The spatiotemporal prior Hj from Rj and Sj

conditions the denoising process of our multi-task diffusion model.

timestep t to generate the corresponding noisy variable zti . On the other hand,
we feed the target frame Ii into the image encoder to extract its multi-scale
spatial features. Simultaneously, we leverage the previous δ frames to abstract
the multi-scale temporal features by reconstructing the target frame in our Tem-
poral Reasoning Module. The temporal features are further integrated with the
spatial feature scale-by-scale to construct the spatiotemporal prior. Finally, the
denoising head predict the segmentation result M̂0

i from the noisy variable zti
conditioned by the spatiotemporal prior.

2.1 Multi-task Diffusion Model (MDM)

Diffusion models. Our MDM is developed based on the conditional diffusion
model [7,11], which belongs to the category of likelihood-based models inspired
by non-equilibrium thermodynamics. The conditional diffusion model presup-
poses a forward noisy process where Gaussian noise is incrementally introduced
to the data sample. This process is defined as:

q (zt | z0) = N
(
zt;

√
ᾱtz0, (1− ᾱt) I

)
, (1)

where ᾱt :=
∏t

s=0 αs =
∏t

s=0 (1− βs) and βs represents the noise scheduler.
This process transforms the ground truth variable z0 to a noisy variable zt by
the randomly sampled timestep t ∈ [0, T ), where zt ∼ N (0, I). When training,
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the reverse process denoising head fθ (zt,x, t) is trained to predict z0 from zt
under the guidance of condition x by minimizing the objective function. When
testing, the prediction ẑ0 is reconstructed from the Gaussian noise zT with the
model fθ conditioned by x, in a markovian way (zT → ẑT−1 → · · · → ẑT−∆ →
· · · → ẑ0, 0 < ∆ < T ), which can be formulated as:

pθ (ẑ0:T−1 | x) = p (zT ) pθ (ẑT−1 | zT ,x)
T−1∏
t=1

pθ (ẑt−1 | ẑt,x) . (2)

Multi-task supervision. As shown in Fig. 1, in addition to the main task
segmentation, we introduce polyp classification and detection as auxiliary tasks
into the conditional diffusion model. Classification and detection tasks effectively
exploit high-level semantic information from objects in frames, thus providing
contextual and discriminative information for segmentation tasks. Specifically,
the transformer-based image encoder receives the raw target frame Ii as input
to generate multi-scale spatial features Sj , specifically with the size of cj ×
H

2j+1 × W
2j+1 , j ∈ {1, 2, 3, 4}. Meanwhile, the transformer-based temporal encoder

takes the previous frames {Ii−δ, .., Ii−1} as input to produce multi-scale temporal
features Rj . Subsequently, Sj and Rj are integrated and fed into a feature
pyramid network to construct the latent spatiotemporal priors Hj . To predict
the segmentation mask from the noisy mask zti , we introduce a CNN-based
denoising head fθ. The multi-level spatiotemporal features Hj are concatenated
with the noisy variable zti in the latent space to provide conditional guidance
for denoising. Then they are passed into an MLP layer to unify the channel
dimension. These unified features are up-sampled to the same resolution and
added together. After that, an MLP layer is adopted to fuse these features.
Finally, the fused feature goes through a 1× 1 convolutional layer to predict the
segmentation mask M̂0

i . The denoising head also outputs the classification score
Ŷcls and the bounding box Ŷbox for instance detection in the target frame Ii. The
segmentation loss Lseg consisting of pixel-wise cross-entropy loss, mean square
error and IoU loss is applied during training. And the two auxiliary tasks are
optimized by cross-entropy loss. Thus, the overall objective function of MDM is:

LMDM = λseg · Lseg + λcls · Lce(Ŷcls, Ycls) + λdet · Lce(Ŷbox, Ybox), (3)

where λseg, λcls, λdet are the balancing hyper-parameters, empirically set as 0.5,
0.05, 0.2, respectively. Ycls is the category of polyps in Ii, i.e., Low-grade ade-
noma, High-grade adenoma, Hyperplastic polyp, Traditional serrated adenoma,
Sessile serrated lesion, Invasive carcinoma [10]; Ybox is (xc, yc, w, h) of a bound-
ing box for the target lesion. The multi-task supervision strategy critically en-
hances the discriminative and generalizable ability of conditional diffusion mod-
els. More importantly, object-level annotations mitigate the class-imbalanced
teaser in pixel-level segmentation of polyps due to the scarcity of lesions.

2.2 Temporal Reasoning Module (TRM)

To capture the dynamic appearance and motion cues in colonoscopy videos, we
design a temporal reasoning module as displayed in Fig. 1. To be specific, we
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formulate a self-supervised proxy task that reconstructs the target frame Ii from
the previous frames {Ii−δ, · · · , Ii−1}. We feed the previous frames into the tem-
poral encoder to extract their multi-scale features frame-by-frame. Then, they
are averaged along the temporal axis and aggregated into multi-scale tempo-
ral features {Rj ∈ Rcj× H

2j+1 × W

2j+1
∣∣j ∈ [1, 4]}. The CNN-based reconstruction

decoder consisting of MLP layers receives and integrates multi-scale temporal
features to predict the next frame Îi. By reasoning the unseen future, the tempo-
ral encoder explores the temporal dependency from video sequences and learns
the spatiotemporal discriminative features to provide guidance for segmenting
polyps with high camouflage.

To produce more realistic frames, we further introduce an adversarial self-
supervision on the reconstructed results inspired by [26]. Our designed TRM
is treated as the generator G while the Inception3 network pre-trained on the
ImageNet is adopted as the discriminator D to distinguish the generated frame Îi
from the real frame Ii. For the fixed parameter of G, we minimize the adversarial
loss LD to optimize the discriminator D as follows:

LD = − log(1−D(Îi))− logD(Ii). (4)

Simultaneously, for the fixed parameters of D, we expect the generator G can
spoof D to generate the frame more like a real counterpart:

LG = LMSE(Îi, Ii)− λadv · logD(Îi), (5)

where LTRM = LG and λadv is set to 0.001 to balance the reconstruction term
of mean square error and the adversarial term.
Total Loss. By combing the MDM loss and the TRM loss, we compute the
total loss Ltotal of Diff-VPS as follows:

Ltotal = λMDM · LMDM + λTRM · LTRM , (6)

where the hyper-parameters are empirically set as λMDM = 0.75, λTRM = 0.25.
More details of the training and inference are displayed in the Supplementary.

3 Experiment

3.1 Datasets and Experimental Setting

We evaluate our proposed Diff-VPS on the largest video polyp dataset SUN-
SEG [10]. SUN-SEG has 113 colonoscopy videos, including 100 positive cases
with 49,136 polyp frames, and 13 negative cases with 109,554 non-polyp frames.
Following [10], we use the re-organized positive cases in SUN-SEG where 14,176
frames are used for training and 24,736 frames are used for testing. We conduct
extensive experiments on two testing sub-datasets (i.e. Easy and Hard) based
on data distribution and each sub-dataset is divided into seen and unseen parts,
where seen represents the visible case that divides one case into two parts for
training and testing (e.g. case 7_2 for training and case 7_1 for testing).
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Table 1: Quantitative comparison of two testing datasets with seen colonoscopy
scenarios. The best values are highlighted in bold. ↑ denotes the higher, the
better.

Model Publish SUN-SEG-Easy SUN-SEG-Hard
Sα ↑ Emn

ϕ ↑ Fw
β ↑ Dice↑ Sα ↑ Emn

ϕ ↑ Fw
β ↑ Dice↑

COSNet [16] TPAMI19 0.845 0.836 0.727 0.804 0.785 0.772 0.626 0.725
MAT [32] TIP20 0.879 0.861 0.731 0.833 0.840 0.821 0.652 0.776
PCSA [6] AAAI20 0.852 0.835 0.681 0.779 0.772 0.759 0.566 0.679
2/3D [17] MICCAI20 0.895 0.909 0.819 0.856 0.849 0.868 0.753 0.809
AMD [15] NeurIPS21 0.471 0.526 0.114 0.245 0.480 0.536 0.115 0.231
DCF [30] ICCV21 0.572 0.591 0.357 0.398 0.603 0.602 0.385 0.443
FSNet [9] ICCV21 0.890 0.895 0.818 0.873 0.848 0.859 0.755 0.828

PNSNet [8] MICCAI21 0.906 0.910 0.836 0.861 0.870 0.892 0.787 0.823
PNS+ [10] MIR22 0.917 0.924 0.848 0.888 0.887 0.929 0.806 0.855
Diff-VPS OURS24 0.930 0.966 0.894 0.908 0.900 0.947 0.851 0.868

Table 2: Quantitative comparison of two testing datasets with unseen
colonoscopy scenarios. The best values are highlighted in bold. †denotes im-
age segmentation method.

Model Publish SUN-SEG-Easy SUN-SEG-Hard
Sα ↑ Emn

ϕ ↑ Fw
β ↑ Dice↑ Sα ↑ Emn

ϕ ↑ Fw
β ↑ Dice↑

COSNet [16] TPAMI19 0.654 0.600 0.431 0.596 0.670 0.627 0.443 0.606
PCSA [6] AAAI20 0.680 0.660 0.451 0.592 0.682 0.660 0.442 0.584
MAT [32] TIP20 0.770 0.737 0.575 0.710 0.785 0.755 0.578 0.712
2/3D [17] MICCAI20 0.786 0.777 0.652 0.722 0.786 0.775 0.634 0.706

ACSNet† [31] MICCAI20 0.782 0.779 0.642 0.782 0.783 0.787 0.636 0.708
SANet† [20] MICCAI21 0.720 0.745 0.566 0.649 0.706 0.743 0.526 0.598
PNSNet [8] MICCAI21 0.767 0.744 0.616 0.676 0.767 0.755 0.609 0.675
FSNet [9] ICCV21 0.725 0.695 0.551 0.702 0.724 0.694 0.541 0.699

UACANet† [13] ACMMM21 0.831 0.856 0.754 0.757 0.824 0.848 0.734 0.739
PNS+ [10] MIR22 0.806 0.798 0.676 0.756 0.797 0.793 0.653 0.737

AutoSAM [18] arXiv23 0.815 0.855 0.716 0.753 0.822 0.866 0.714 0.759
Diff-VPS OURS24 0.828 0.883 0.748 0.767 0.823 0.886 0.733 0.764

Implementation details. The proposed framework was implemented on the
Pytorch platform and trained by two NVIDIA 3090 GPUs. We trained our model
for 15 epochs with a batch size of 16. A video clip of 5 frames with a patch size
of 224×224 was fed into the network. We adopted the Adam optimizer with the
initial learning rate of 1× 10−4, which was decayed by a polynomial scheduler.

3.2 Comparison with State-of-the-Arts

Baselines. We compare our Diff-VPS with popular image- and video-level ob-
ject/polyp segmentation methods on SUN-SEG-Easy and SUN-SEG-Hard, i.e.,
COSNet [16], MAT [32], PCSA [6], 2/3D [17], AMD [15], DCF [30], FSNet [9],
PNSNet [8], PNS+ [10], ACSNet [31], SANet [20], UACANet [13], and Au-
toSAM [18] in Tab. 1 and 2.
Metrics. For a comprehensive evaluation, we use four metrics following [10]:
(1) S-measure (Sα), which evaluates region and object aware structural similar-
ity; (2) Enhanced-alignment measure (Emn

ϕ ), which measures pixel level match-
ing and image-level statistics; (3) Weighted F-measure (Fw

β ), which amends the
“Equal-importance flaw” in Dice and Fβ . (4) Dice coefficient, which measures
the similarity between two sets of data.
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Fig. 2: Qualitative results on SUN-SEG. Left: a clip from easy-seen dataset case
75. Right: a clip from hard-unseen dataset case 36.

Quantitative Comparison. As shown in Tab. 1, our algorithm significantly
outperforms the second-best method PNS+ on seen colonoscopy videos across
four metrics by a remarkable margin (e.g., for SUN-SEG-Hard, 1.3% in Sα, 1.8%
in Emn

ϕ , 4.6% in Fw
β , 1.2% in Dice). Also, in Tab. 2, our method is superior to

the second-best method AutoSAM on unseen colonoscopy videos, especially for
SUN-SEG-Easy (1.3% in Sα, 2.8% in Emn

ϕ , 3.2% in Fw
β , 1.4% in Dice).

Qualitative Comparison. As displayed in Fig. 2, we showcase several polyp
segmentation results of our Diff-VPS and the comparison methods on the SUN-
SEG. Our method demonstrates robust performance in accurately locating and
segmenting polyps across diverse and challenging scenarios. It has proficiency in
managing polyps of varying dimensions, uniform areas, and textures. The ver-
satility of our model allows it to navigate through intricate situations, providing
reliable and precise segmentation results for polyps.
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Table 3: Ablation studies on SUN-SEG. ‘MDM’ is multi-task diffusion model.
‘TRM’ is temporal reasoning module. ‘ASS’ is adversarial self-supervised strat-
egy.

Models MDM TRM ASS Sub-dataset Scenarios Sα Emn
ϕ Fw

β Dice

#1
Easy Seen 0.910 0.948 0.840 0.882

Unseen 0.797 0.850 0.736 0.726

Hard Seen 0.870 0.935 0.841 0.837
Unseen 0.802 0.859 0.721 0.717

#2 ✓
Easy Seen 0.920 0.965 0.899 0.896

Unseen 0.808 0.863 0.748 0.740

Hard Seen 0.882 0.932 0.853 0.839
Unseen 0.815 0.881 0.727 0.744

#3 ✓
Easy Seen 0.917 0.968 0.896 0.895

Unseen 0.807 0.855 0.745 0.733

Hard Seen 0.872 0.932 0.832 0.833
Unseen 0.807 0.870 0.726 0.725

#4 ✓ ✓
Easy Seen 0.924 0.963 0.893 0.902

Unseen 0.817 0.878 0.757 0.761

Hard Seen 0.874 0.937 0.844 0.847
Unseen 0.823 0.883 0.744 0.750

Our method ✓ ✓ ✓
Easy Seen 0.930 0.966 0.894 0.908

Unseen 0.828 0.883 0.748 0.767

Hard Seen 0.900 0.947 0.851 0.868
Unseen 0.823 0.886 0.733 0.764

3.3 Ablation Study

Extensive experiments are conducted on SUN-SEG in Tab. 3 to evaluate the
effectiveness of our major components. To achieve this, we construct four base-
line networks from our method. The first baseline (denoted as “#1”) is to re-
move multi-task supervision and temporal reasoning module from our network.
It means that “#1” equals the vanilla diffusion model [11]. Then, we introduce
classification and detection supervisions into “#1” to construct “#2”, and build
“#3” by incorporating our TRM without adversarial self-supervision. Based on
“#3”, adversarial self-supervision is applied to construct “#4”. Hence, “#4” equals
removing the multi-task supervision from our full method.
Effectiveness of MDM. Observed from “#1” and “#2”, the MDM strategy
significantly improves the performance across all metrics. It indicates that cate-
gory imbalance in pixel-level classification (i.e. segmentation) can be mitigated
by applying detection and classification tasks. The categories of the detection
and classification tasks are relatively balanced as they leverage object-level an-
notations for supervision. The multi-task supervision improves the generalizable
ability of the model, which is also proved by incorporating MDM into #4 to
construct our full method.
Effectiveness of TRM. As shown in Tab. 3, “#3” advances the performance
of “#1” on seen and unseen videos, indicating that TRM plays a pivotal role in
exploiting the temporal redundancy in colonoscopy videos. Compared to “#3”,
“#4” achieves a considerable improvement by adapting the model to the real
data distribution and highlighting the perceptual quality of the samples. This
demonstrates the effect of the generative adversarial self-supervision.
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4 Conclusion

This paper presents the first diffusion-based multi-task framework for video
polyp segmentation (VPS). The main idea is to improve the discriminative and
generalizable ability of diffusion models by incorporating the multi-task supervi-
sion strategy. We effectively explore the temporal dependency by incorporating
temporal reasoning module to mitigate the high camouflage of polyps in videos.
Experiments demonstrate that our Diff-VPS is capable of state-of-the-art re-
sults on VPS benchmark dataset SUN-SEG, which can be a critical baseline for
diffusion models on video object/lesion segmentation.
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