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Abstract. Ejection Fraction (EF) regression faces a critical challenge
due to severe data imbalance since samples in the normal EF range signif-
icantly outnumber those in the abnormal range. This imbalance results
in a bias in existing EF regression methods towards the normal popula-
tion, undermining health equity. Furthermore, current imbalanced regres-
sion methods struggle with the head-tail performance trade-off, leading
to increased prediction errors for the normal population. In this paper,
we turn to ensemble learning and introduce EchoMEN, a multi-expert
model designed to improve EF regression with balanced performance.
EchoMEN adopts a two-stage decoupled training strategy. The first stage
proposes a Label-Distance Weighted Supervised Contrastive Loss to en-
hance representation learning. This loss considers the label relationship
among negative sample pairs, which encourages samples further apart in
label space to be further apart in feature space. The second stage trains
multiple regression experts independently with variably re-weighted set-
tings, focusing on different parts of the target region. Their predictions
are then combined using a weighted method to learn an unbiased ensem-
ble regressor. Extensive experiments on the EchoNet-Dynamic dataset
demonstrate that EchoMEN outperforms state-of-the-art algorithms and
achieves well-balanced performance throughout all heart failure cate-
gories. Code: https://github.com/laisong-22004009/EchoMEN.

Keywords: Echocardiography · Ejection Fraction · Data Imbalance ·
Multi-Expert Network.
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Type Definition

HFrEF
EF < 40%, indicating significant 

systolic dysfunction

HFmrEF
EF 40%-49%, indicating mild 

systolic impairment

HFpEF

EF > 50%, heart failure symptoms 

exist despite normal ejection 

performance

(a) Definition of Heart Failure (c) Mean Squared Error Distribution(b) Ejection Fraction Distribution

Fig. 1. (a) defines different types of heart failure. (b) illustrates the distribution of
EF labels within the EchoNet-Dynamic dataset, where HFpEF is the most prevalent
category, followed by HFmrEF, and HFrEF being the least common. (c) demonstrates
the distribution of Mean Squared Error (MSE) for baseline, DIR and EchoMEN.

1 Introduction

Ejection Fraction (EF) is a critical indicator of heart systolic function and
is crucial for diagnosing heart failure [3,9]. Recent advances in deep learning
techniques have significantly improved the performance of EF regression. For
instance, EchoNet [13] utilized an R2+1D ResNet architecture for end-to-end
EF prediction, while EchoCoTr [12] adopted a vision transformer for this task.
EchoGNN [11] introduced an explainable EF framework through Graph Neural
Networks. Despite these progress, a critical challenge persists – the impact of
imbalanced data. According to [10], heart failure can be classified into three cat-
egories based on EF measurements: Reduced EF (HFrEF), Mildly Reduced EF
(HFmrEF), and Preserved EF (HFpEF). The prevalence of data from normal
individuals leads to a model bias towards the HFpEF category, consequently
increasing the prediction error for HFrEF and HFmrEF cases, as summarized in
Fig. 1. This imbalance poses a significant challenge to health equity, as accurate
diagnosis across all categories of heart failure is crucial for effective treatment
planning and health outcomes.

Yang et.al [20] first investigated the problem of learning from imbalanced
data with continuous targets, which we refer to as Deep Imbalanced Regres-
sion (DIR). They proposed a solution that performs distribution smoothing on
both label and feature spaces, demonstrating potential in handling imbalanced
data scenarios. However, when directly applied to the EF estimation task, their
method faces the following challenges: (1) Despite alleviating the impact of data
imbalance on the model to some extent, it lacks sufficient consideration of the
distribution of sample labels in EF estimation. This leads to limited represen-
tation capability in scenarios where the label semantic distribution is extremely
imbalanced. (2) It adopts a single model structure for modeling and represen-
tation learning, lacking the ability to specifically model samples from different
EF ranges. Consequently, it fails to effectively capture and represent the unique



EchoMEN: Combating Data Imbalance in Ejection Fraction Regression 3

patterns exhibited by samples across different EF ranges. As shown in Fig. 1(c),
the DIR method reduces errors in HFrEF but increases the error of HFpEF.

To address these challenges, we leverage contrastive learning and ensemble
learning to consider continuous label relationships and mitigate the negative im-
pact between head and tail data, respectively. In this paper, we propose a method
termed EchoMEN to combat data imbalance in EF regression via a Multi-Expert
Network. Firstly, to capture the distance relationship between data points, we
enhance the encoder’s feature learning through a Label-Distance Weighted Su-
pervised Contrastive Loss (LLDW-SupCon), optimizing for dissimilarity among
negative sample pairs by introducing an extra label-space continuity constraint.
Secondly, to structurally alleviate the head-tail performance trade-off, we design
multiple regression experts and an expert aggregator. The regression experts are
independently trained, with each expert focusing on distinct aspects of the target
distribution via a Re-weighted Regression Loss (LR-Regression). Subsequently, the
aggregator combines all expert outputs to generate an unbiased final prediction.
We validate our proposed method on the benchmark EchoNet-Dynamic dataset
and demonstrate its superiority over baseline approaches.

Our contributions are: (1) To the best of our knowledge, we are the first
work dedicated to addressing the imbalance issue in EF regression and enhancing
the fairness of heart failure diagnosis. (2) We propose a supervised contrastive
loss LLDW-SupCon to boost representation learning in imbalanced dataset, which
leverages the additional information encoded in label-space relationships. (3)
We introduce the concept of ensemble learning to the domain of EF estimation
and design a multi-expert model, which structurally alleviates the trade-off of
head-tail performance (4) EchoMEN surpasses baseline approaches with higher
estimation accuracy and delivers a more balanced performance.

2 Methodology

We denote D : {(xi, yi)}Ni=1 as the training dataset consisting of N instances.
Each instance i comprises an echocardiogram video xi ∈ RT×W×H×C and a
ground truth yi ∈ R. As illustrated in Fig. 2, EchoMEN employs a two-stage
decoupled training scheme, Representation Learning and Multiple Experts Learn-
ing, to address the challenge of data imbalance in EF regression. The details of
each stage are described as follows.

2.1 Label-Distance Weighted Supervised Contrastive Loss

In this stage, we aim to learn a feature embedding network fθ from labelled
dataset D. Motivated by the concept of distribution continuity [20], we integrate
it with contrastive learning and introduce a novel contrastive loss LLDW-SupCon
to enhance representation learning in imbalanced data scenarios. Specifically,
let I denote the sample indices for a randomly sampled batch during training,
P(i) := {j ∈ I | yj = yi ∧ j ̸= i} as the set of indices for all positive samples
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Fig. 2. Overview of EchoMEN. EchoMEN is trained using a two-stage decoupled
training approach. Stage 1: (a) The video encoder is optimized with a Label-Distance
Weighted Supervised Contrastive Loss (LLDW-SupCon) and a naive regression loss. (b)
The LLDW-SupCon enhances representation learning by differentially treating negative
pairs based on label distances. Stage 2: (c) Multiple regression experts are trained using
individual Re-weighted Regression Loss and are combined with an expert aggregator.
(d) The varying sample weight distributions adopted by different experts reflect the
diversity in balancing, moving from treating all samples equally to focusing more on
sparsely distributed areas. The expert aggregator votes on the predictions from differ-
ent experts and ultimately outputs the final outcome.

for anchor sample i and Q(i) := {j ∈ I | yj ̸= yi} as the negative samples, then
LLDW-SupCon can be formally expressed as:

LLDW-SupCon = −
∑
i∈I

1

|P(i)|
∑

p∈P(i)

log
exp(zi · zp/τ)∑

j∈Q(i) βij exp(zi · zj/τ)
(1)

where zi = h(f(xi)) denotes the normalized feature vector of sample i with h
as the projector network. τ represents a temperature scaling parameter, and
the dot product zi · zj measures the similarity between the embeddings of the
sample i and j. βij is calculated as a normalized weight reflecting the distance
dij between the labels of the anchor sample i and a negative sample j, defined
by:

βij =
|Q(i)| · exp(dij)∑

k∈Q(i) exp(dik)
(2)

In practice, dij can be simply instantiated as L1 or L2 label difference.
Our proposed LLDW-SupCon can be interpreted as a generalization of super-

vised contrastive loss [6] LSupCon from pushing all negative samples equally to
considering the inherent continuity underlying the labels in regression problems.
As illustrated in Fig. 2(b), given randomly sampled indices i, j, k with label
yi < yj < yk, their corresponding feature embeddings are zi, zj , zk respectively.
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For anchor sample i, LSupCon minimizes the similarity between negative pairs
zi · zj and zi · zk and assigns them equal weights. However, our LLDW-SupCon
uses weight term β to differentially treat negative pairs, which promotes a larger
feature space separation of zi · zk than zi · zj . By introducing an extra label
continuity contrastive constraint, LLDW-SupCon can improve the representational
capabilities of the video encoder. The continuity of the feature space can align
more effectively with the target space, thereby aiding EchoMEN in combatting
data imbalance in EF regression.

Moreover, to accelerate the learning of video encoder, we further adopt a
regression loss LRegression = 1

N

∑N
i L(e(f(xi)), yi), where e is an extra regres-

sion head. Thus, the overall loss function for Representation Learning stage is
Lstage1 = LRegression + λLLDW-SupCon, where λ is a coefficient that controls the
relative importance of the two tasks.

2.2 Multiple Experts Training

Based on the recent studies [18,7,19] of using Multi-Expert Networks in long-
tailed classification tasks, we extend it to the domain of imbalanced EF regres-
sion. The key to such methods lies in ensuring diversity among different experts.
In long-tailed classification, diversity is achieved by re-sampling or dividing the
dataset into different subsets. However, experimental results in Tab. 1 show that
such approaches perform poorly in the EF regression problem, leading to a sit-
uation where, although each expert performs well within their focused region,
aggregating the results of experts proves to be difficult. To address this issue, we
introduce a re-weighting (cost-sensitive) learning strategy to enhance correlation
among experts.

As presented in Fig. 2(c), our multiple-expert architecture comprises a shared
video encoder fθ, M independent regression experts E = {eθ1 , ..., eθM }, and an
expert aggregator gθ. This design has the advantage that it is computationally
lightweight and makes all heads rely on a common feature embedding z. In this
stage, we fix the parameter of fθ and focus on the training of heads. We also
introduce B equally spaced bins across the target range and compute the count
of data points per bin, denoted by f = (f1, · · · , fB).

To achieve diversity and enhance complementarity among experts, we train
each expert eθm with different Re-weighted Regression Loss Lm

R-Regression, which
is defined by:

Lm
R-Regression =

N∑
i=1

wm
i L(ŷmi , yi) (3)

where ŷmi represents the prediction of sample i from the expert eθm . wm
i indicates

the weight of sample i when calculating regression loss, expressed as follow:

wm
i =

(
fb(i)

)−pm
, with pm =

m

M − 1
,m ∈ {0, ...,M − 1} (4)

where b(i) indicates the bin of sample i. The parameter pm modulates the focus
intensity of an expert on less populated regions. Fig. 2(d) displays the variation
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Table 1. Quantitative comparisons on the EchoNet-Dynamic dataset. The best two
results are indicated using bold fonts and underlining, separately.

Metrics MAE ↓ GM ↓

Shot All HFrEF HFmrEF HFpEF All HFrEF HFmrEF HFpEF

SQInv [16] 5.05 7.28 6.34 4.52 3.27 4.70 4.16 2.99
DIR [20] 4.68 5.99 5.33 4.51 2.96 3.68 3.75 2.90
Focal-R [8] 4.13 6.36 5.76 3.56 2.57 3.95 3.75 2.30
RankSim [2] 3.97 6.12 5.44 3.43 2.49 3.95 3.72 2.22

EchoNet [13] 4.05 6.26 5.96 3.45 2.51 3.74 3.91 2.23
Esfeh et.al [5] 4.46 6.67 6.52 3.97 2.98 4.72 4.92 2.59
Reynaudfor et.al [15] 5.42 10.13 9.91 4.01 3.40 6.50 7.94 2.74
EchoGNN [11] 4.45 6.83 5.93 3.93 2.85 4.67 3.83 2.54
EchoCoTr [12] 3.96 6.02 5.31 3.47 2.52 3.87 3.72 2.24
EchoMEN(Ours) 3.93 5.94 5.29 3.44 2.44 3.64 3.71 2.17

of sample weight distribution across bins with an increase of pm. When pm = 0,
experts treat each sample equally; when pm = 1, experts adopt inverse frequency
weighting and fully compensate for density variations in the dataset. This setting
of multi-expert training allows each expert to consider samples from other areas
during learning and reduces the error caused by incorrect expert aggregation.

To combine the predictions of individual ensemble members, aggregator gθ
takes z as input and compute a set of weights αm = h(f(xi)), each corresponding
to one of the M experts. The final prediction of EchoMEN is ŷi =

∑M
m=1 αm ·ŷmi .

Here, our aggregator is trained in an end-to-end fashion, using the regression loss
LRegression = 1

N

∑N
i=1 L(ŷi, yi).

3 Experiments

We conduct extensive experiments to validate the proposed method for EF re-
gression and compare it with competing approaches using benchmark datasets.

3.1 Dataset and Evaluation Metrics

The EchoNet-Dynamic dataset [13] comprises 10,030 videos, each annotated with
a EF value. Each video is a sequence of 112×112 grayscale images, capturing
the dynamic motion of the heart across different cardiac cycles. The dataset is
divided into training, validation, and testing splits containing 7,460, 1,288, and
1,277 videos, respectively. The evaluation metrics include both Mean Absolute
Error (MAE) and Geometric Mean (GM). Experiments are performed on both
the overall dataset and its three subsets.
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Table 2. Ablation Study on EchoNet-Dynamic

Metrics MAE ↓ GM ↓

Shot All HFrEF HFmrEF HFpEF All HFrEF HFmrEF HFpEF

w/o LLDW-SupCon 4.03 6.33 5.33 3.49 2.56 4.27 3.74 2.25
w/o multiple experts 4.02 6.50 5.31 3.49 2.53 4.35 3.72 2.23
w/o re-weighting 4.36 5.97 5.75 3.97 2.76 3.69 3.81 2.55
w/o aggregator 4.01 5.96 4.99 3.59 2.49 3.66 3.40 2.26
Ours 3.93 5.94 5.29 3.44 2.44 3.64 3.71 2.17

3.2 Implementation Details

We implement the proposed EchoMEN model using the PyTorch library [14].
The video encoder fθ utilizes a R(2+1)D ResNet [17] pretrained on the Kinetics-
400 dataset [4]. Each expert eθ is a single linear layer and gθ is made of linear
layers followed by Softmax for outputting weights. hθ is a two-layer MLP with
ReLU. For label discretization, the length of fb is set to 1. All experiments are
conducted on a NVIDIA GeForce GTX A100 GPU, with a batch size of 20.
Our EchoMEN model is optimized using Stochastic Gradient Descent (SGD) [1]
with a learning rate of 10−4 and a decay factor of 0.1 every 10 epochs. Stage 1 is
trained for 40 epochs with λ of 0.5 and stage 2 has 20 epochs. MSE is employed
as the regression loss function.

3.3 Comparisons

We compare EchoMEN with the following recent EF regression baselines: (a)
EchoNet [13]; (b) Esfeh et.al [5]; (c) Reynaudfor et.al [15]; (d) EchoGNN [11];
(e) EchoCoTr [12]. Additionally, we implement current deep imbalanced methods
and apply them to EF regression for further comparison: (f) SQInv [16] utilizes
a square-root-inverse-frequency weighting scheme; (g) DIR [20] performs distri-
bution smoothing on label and feature spaces; (h) Focal-R [8] is the regression
version of Focal Loss; (i) RankSim [2] adds a regularization term to leverage
the continuity of targets.

The quantitative comparison results are reported in Tab. 1. As observed,
EchoMEN outperforms all existing approaches in terms of overall performance,
as indicated by superior results across both metrics. Notably, in sparsely dis-
tributed regions, including HFrEF and HFmrEF, our work achieves the best
results compared to all competitors, highlighting that EchoMEN effectively uti-
lizes the predictions of different experts to address the challenges of imbalanced
datasets with significant frequency variations. As for the densely populated HF-
pEF subset, EchoMEN is on par with the existing state-of-the-art method [2]
but with higher overall accuracy. In summary, our proposed method not only
surpasses all competing methods on the entire dataset but also demonstrates a
well-balanced performance across all three subsets.
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(a) Comparison between EchoMEN and EchoNet (b) Each expert and EchoMEN MAE

Fig. 3. (a) compares the performance of EchoMEN and EchoNet. (b) showcases per-
expert and aggregated MAE on EchoNet-Dynamic. EchoMEN nearly matches the per-
formance of the best expert on each category.

Moreover, we present the predicted EF values of EchoMEN and EchoNet
against the ground truth values in Fig. 3(a), where the lines indicate the least-
squares regression line between the model predictions and the ground truth.
It can be observed that the slope of EchoMEN is closer to 1 compared with
EchoNet, suggesting a better fitting result.

Additionally, in Fig. 3(b), we provide an analysis of each expert used in
our method. We observe that the aggregator plays a crucial role in dynamically
weighting the outputs of different experts. The prediction quality of the ensemble
method approaches that of an oracle, which consistently optimally weights the
outputs of all experts across all subsets.

3.4 Ablation Study

We explore the influence of different design choices in our framework by training
the following variants on the same training data. The variations include: (a) w/o
LLDW-SupCon utilizes a standard supervised contrastive loss; (b) w/o multiple
experts removes the multiple experts learning stage; (c) w/o re-weighting
divides the dataset into multiple subsets and trains regression experts using
different subset; (d) w/o aggregator replaces the aggregator-based weighted
mechanism with average voting.

Tab. 2 showcases the impact of removing one of the components of EchoMEN
in the EchoNet-Dynamic dataset. Overall, each ablation results in increases in
MAE and GM and combining all designs leads to the best performance. Indi-
vidually, LLDW-SupCon and multiple experts primarily benefit the HFrEF cases,
whereas re-weighting mainly decreases the error in the HFmrEF category. The
aggregator makes the prediction error more balanced.

4 Conclusion and Future Work

This paper presented a multi-expert model termed EchoMEN to tackle the data
imbalance in EF estimation. EchoMEN implements a decoupled learning strategy
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in two stages. The first stage introduces a contrastive loss LLDW-SupCon, which
adaptively embeds target relationships into the objective to differently weight
negative pairs, achieving better alignment between feature and label space for
representation learning. The second stage trains multiple regression experts and
weights all predictions for final estimation, allowing the strengths of each expert
to be leveraged within their respective target areas. Experiments on the EchoNet-
Dynamic dataset demonstrate the effectiveness of EchoMEN.

Limitations and Future Work: EchoMEN requires computing outputs
of all experts during inference, which leads to significant computational cost
with an increasing number of experts. Therefore, we plan to refine our multi-
expert architecture with dynamic routing to decrease complexity by selectively
activating experts only when needed.
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