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Abstract. Notable progress has been made in medical image segmen-
tation models due to the availability of massive training data. Never-
theless, a majority of open-source datasets are only partially labeled,
and not all expected organs or tumors are annotated in these images.
While previous attempts have been made to only learn segmentation
from labeled regions of interest (ROIs), they do not consider the la-
tent classes, i.e., existing but unlabeled ROIs, in the images during the
training stage. Moreover, since these methods rely exclusively on labeled
ROIs and those unlabeled regions are viewed as background, they need
large-scale and diverse datasets to achieve a variety of ROI segmenta-
tion. In this paper, we propose a framework that utilizes latent classes
for segmentation from partially labeled datasets, aiming to improve seg-
mentation performance, especially for ROIs with only a small number
of annotations. Specifically, we first introduce an ROI-aware network to
detect the presence of unlabeled ROIs in images and form the latent
classes, which are utilized to guide the segmentation learning. Addition-
ally, ROIs with ambiguous existence are constrained by the consistency
loss between the predictions of the student and the teacher networks.
By regularizing ROIs with different certainty levels under different sce-
narios, our method can significantly improve the robustness and reliance
of segmentation on large-scale datasets. Experimental results on a pub-
lic benchmark for partially labeled segmentation demonstrate that our
proposed method surpasses previous attempts and has great potential to
form a large-scale foundation segmentation model.

Keywords: Medical image segmentation · partially labeled data · latent
classes · awareness guidance
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1 Introduction

Accurate segmentation of regions of interest (ROIs) in medical images is an
important task for computer-aided diagnosis, which could accelerate clinical
workflow and reduce workload for image reading [7]. The recent development
of foundation models [2, 12] has witnessed a giant leap in the performance of
medical image segmentation on variant organs and lesions attributed to large-
scale training data. For example, a number of segmentation models [3, 9, 11, 13]
have utilized multiple open-source datasets to form a training set that is large
enough to guarantee segmentation performance. However, most of the datasets
are partially labeled, i.e. only a few ROIs in the images are labeled while the rest
organs or lesions are not. Such a partial labeling issue would result in unlabeled
organs being treated as the background, and segmentation training could require
multiple datasets with a variety of ROIs to overcome such shortcomings. There-
fore, partially labeled data pose a challenge in the development of a universal
segmentation model.

Previous methods typically utilize multi-head design [3,13] or dynamic paths
[9, 21] to surpass the partial labeling issue in the open-source medical image
segmentation datasets. Under such circumstances, only the labeled data con-
tributes to the back-propagation, and the unlabeled ROIs in the images are
simply ignored. Although these methods could handle the partial labeling issue,
they require sufficient data for each ROI to boost performance, as they overlook
the unlabeled ROIs that may contribute to the training process. Another com-
monly applied solution is the combination of dynamic paths and semi-supervised
learning [20], which leverages the unlabeled ROIs in the images. However, semi-
supervised learning approaches are unaware of the existence of the ROIs in the
image, which could lead to less optimal segmentation performance.

In this paper, we are aware of the latent classes in partially labeled segmen-
tation and develop a novel approach that leverages the latent classes in the med-
ical images to improve the segmentation performance and reduce the demand
for large-scale training data. Specifically, we design a teacher-student framework
with an extra ROI-aware classifier that identifies the existence of unlabeled ROIs
in the image, while the supervision of the student network is determined by the
prediction certainty from the classifier. Given an unlabeled ROI, it is regarded as
a latent class when the certainty level of its existence is high enough, otherwise
it is regarded as an ambiguous class. During training, the student network is su-
pervised by the segmentation losses from both labeled ROIs and latent classes.
Additionally, the student network is further regularized by the consistency loss
with the teacher network for ambiguous classes. In this way, the segmentation
fully benefits from all of the available training data regardless of the partial la-
beling issue. This is more advantageous for categories with only a small number
of annotations to benefit from potential unlabeled information. The proposed
method has been extensively evaluated on a partially labeled multi-organ and
tumor segmentation dataset. Experimental results demonstrate the effectiveness
of the proposed method by mining latent classes in the images, which outper-
forms previous partially labeled segmentation methods.
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2 Method

2.1 Preliminaries: Partially Labeled Segmentation

Considering a universal segmentation of an ROI set C with K ROIs (including
organs and tumors), the ideal implementation is a fully-supervised multi-class
segmentation on all the ROIs. However, it is not practical in the real scenario
to collect large-scale datasets with fully-labeled ROIs. Therefore, it is a common
practice to assemble m partially labeled datasets, where each dataset contains
annotations for Km ROIs out of total K ROIs (Km < K). Actually, this is
consistent with the annotation strategy of most open-source datasets which only
annotate the targets of interest.

Dynamic heads [21] have proved to be successful in dealing with partially
labeled segmentation. Inspired by [21] and [9], we build a segmentation network
F with a dynamic segmentation head parameterized by the ROI text embeddings
generated from BiomedCLIP [22]. Compared with the one-hot task encoding
proposed in [21], CLIP text embeddings have more flexibility and could handle
the cases where different ROIs are partly related [9]. During training, only the
labeled ROIs are considered for back-propagation, while the ROIs that are not
labeled do not contribute to the loss calculation.

Although the network with dynamic heads can learn segmentation from mul-
tiple partially labeled datasets, the current learning objective [9,21] does not take
into consideration the latent classes that are not labeled in the images. Thus,
the training data is not fully investigated during the training process, leading
to less optimal segmentation performance especially when the available training
data are not large enough for some target ROI. However, many images contain
these ROI regions but without gold standard.

2.2 Latent Class Identification

The ROIs that exist in the image but remain unlabeled, which are termed latent
classes, could be leveraged to improve the segmentation performance, especially
for the ROIs with limited annotations. In order to utilize the latent classes, it is
necessary to first identify the ROIs existing in the image. Liu et al. [9] claimed
that CLIP embeddings as task encoding provide information on the relationships
of different ROIs. However, the related ROIs hinted by CLIP embeddings do
not imply spatial location adjacency in a medical scan. For instance, "lower
limbs artery" and "carotid artery" may have a very high similarity in CLIP
embeddings as they are both vital arteries in the human body. However, they
are located in completely different parts of the human body, which means it is
almost impossible for them to appear in the same patch of CT or MRI images.

Here we adopt a simple yet effective approach to surpass this problem. Specifi-
cally, we propose to train a classification network that identifies whether a certain
ROI is present in the input image (or image patch), called ROI-aware network.
We adopt a 3D ResNet-18 [5] for the identification of the latent ROIs when given
an input image, which is a lightweight and effective classifier on medical image
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Fig. 1. The overall framework for partially labeled segmentation that leverages latent
classes, where the unlabeled ROIs are identified by an ROI-aware network. Existing
and non-existing ROIs are classified as latent classes and regularized with CE loss,
while ambiguous classes are regularized with MSE loss.

classification without adding noticeable extra computational cost. To enhance
the network’s ability to recognize ROI, we use the TotalSegmentator dataset [17]
to train the classifier, which contains 104 anatomical structures (27 organs, 59
bones, 10 muscles, 8 vessels). The learning objective for the ROI-aware network
is to minimize the multi-class binary classification loss given the existence label
of ROIs from TotalSegmentator dataset. Based on that, our ROI-aware network
can identify almost all the organs of the human body. It should be noted that
in this dataset, tumors are not presented in these images. Thus, when the ROI-
aware network is identifying whether a certain kind of tumor is a latent class,
the decision is based on the existence of the related organ. For example, when
"liver" is identified as a latent class, "liver tumor" is viewed as a latent class as
well, even if we are not aware of the existence of liver tumors.

2.3 Latent Class Mining for Segmentation

In order to leverage the latent classes during segmentation learning, we pro-
pose to allow the network to learn the segmentation of latent classes from the
pseudo labels. Thus, we adopt a teacher-student framework to generate the
psuedo labels for unlabeled ROIs. The main difference between the proposed
latent class mining framework and vanilla mean-teacher framework [15] is that
our method leverages the ROI-awareness information, i.e., only the identified
latent classes contribute to the segmentation learning. Specifically, the proposed
framework consists of a student network FS and a teacher network FT . During
training, the parameters θT of teacher network FT is updated using the expo-
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nential moving average (EMA) of the parameters θS of the student model FS :
θ̃T = αθT + (1 − α)θS , where α = 0.999 is an empirical decay rate for EMA
update.

Considering the segmentation of the ROI set C with K ROIs, let x ∈
RH×W×D denote a partially labeled input image, where the labeled ROI set
Cl contains Km ROIs (Km < K). The unlabeled ROIs are denoted as Cu

with K − Km kinds of ROIs, where Cl ∪ Cu = C. During training, the in-
put image x is augmented with spatial and intensity transformations to re-
duce overfitting. The transformed version of x is denoted as xT , which is then
fed to the teacher network F(·; θT ) for generating the corresponding prediction
ŷT = F(x; θT ) ∈ RK×H×W×D. Also, xT is further augmented by intensity trans-
formations to generate xS , which is then fed to the student network F(·; θS) for
generating the corresponding prediction ŷS = F(x; θS) ∈ RK×H×W×D. During
the segmentation training, the student network is optimized by the supervised
segmentation loss of the labeled ROIs Cl:

min
∑

ci∈Cl

Lseg(ŷ
ci
S , yci), where ŷS = F(xS ; θS), (1)

where ci denotes a specific category out of labeled ROI, and yci denotes the
corresponding segmentation label.

In order to identify the latent classes in input image x, the input image
patch xT is fed to the ROI-aware network for outputting the scores pci of each
ROI ci in C. The latent classes are classified by a set of thresholds {ϕl, ϕh}.
When the predicted score pci of ROI ci is greater than the upper bound ϕh, ci is
regarded as a positive latent class in the image. It is worth noticing that when the
predicted score pci of ROI ci is smaller than the lower bound ϕl, ci is viewed as
a negative latent class, since the ROI-aware network is very confident about its
existence in the image patch. In this case, the student network is optimized by the
cross-entropy loss between student prediction and the pseudo labels ȳci , where
the pseudo labels are generated from teacher’s output and "sharpened" [18] to
reduce the entropy in student’s prediction.

min
∑

ci∈Clatent

LCE(ŷ
ci
S , ȳci), where ȳci =

(ŷciT )1/τ

(ŷciT )1/τ + (1− ŷciT )1/τ
, (2)

where Clatent denotes the set of latent classes, and τ = 0.1 is the temperature
parameter for "sharpening" operation. Note that the labeled ROIs are excluded
from Clatent and do not involve the teacher-student loss calculation.

However, the ROI-aware network will not necessarily output a score that
meets the requirement of thresholds {ϕl, ϕh}. When the output score for ROI
cj is greater than ϕl but smaller than ϕh, the ROI cj is regarded as an ambigu-
ous class. This phenomenon could occur when the ROI size is too small to be
identified by the ROI-aware network. In such cases, we do not use the teacher’s
output as pseudo labels as the teacher’s predictions could be inaccurate. Inspired
by [19], we require the predictions from both the student network and teacher
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network to be consistent on the ambiguous class cj :

min
∑

cj∈Cambiguity

LMSE(ŷ
cj
S , ŷ

cj
T ), (3)

where Cambiguity denotes the set of ambiguous classes. It should be noted that
Cambiguity ∪Clatent = Cu.

Thus, both latent classes and ambiguous classes are considered during seg-
mentation learning, and different strategies are employed for best segmentation
learning. Overall, the segmentation loss for latent classes LLatent could be writ-
ten as follows:

LLatent = wCELCE + wMSELMSE . (4)

where wCE and wMSE are weighting factors of the losses.

3 Experiments

3.1 Data

Following [21], we build the MOTS benchmark from the LiTS [1], KiTS [6], and
MSD [14] challenges. The MOTS benchmark consists of 920 training images and
235 testing images for the segmentation of the following 11 organs and tumors:
liver, liver tumor, kidneys, kidney tumor, hepatic vessels, hepatic vessel tumor,
pancreas, pancreatic tumor, colon cancer, lung tumor, and spleen. We follow
the same data split setting described in [21] for fair comparison. In addition, we
utilize TotalSegmentator [17] dataset for the training of ROI-aware network, as
all the above organs are labeled in this fully-labeled dataset. We use 90% of the
data in TotalSegmentator to train the ROI-aware network, while the remaining
10% are used for the performance evaluation. It should be noted that only the
ROI-classifier is trained on the TotaoSegmentator dataset, and the segmentation
network is not trained on the TotalSegmentator to maintain a fair comparison.

3.2 Implementation Details

The framework is implemented with PyTorch 1.12.1 on a Debian Linux server
with 4 NVIDIA A40 40G GPUs. The segmentation network is built upon Swi-
nUNETR [4], where the segmentation head is replaced by a dynamic head pro-
posed in [9, 21]. During training, the input images are cropped into patches
with a fixed spatial size of 160 × 160 × 96 and fed to the segmentation net-
work as well as the ROI-aware network. The batch size is set to 12 and the
model is trained for 2000 epochs. The segmentation network is optimized by an
AdamW [10] optimizer with an initial learning rate 1× 10−4 decayed by cosine
annealing and a weight decay of 1× 10−5. For hyperparameter choosing, we set
ϕh = 0.8, ϕl = 0.1, wCE = 1.0, and wMSE = 1.0 in the experiments. Due to
the GPU memory restrictions, the ROI-aware network is trained in advance and
frozen during segmentation training. We optimize the ROI-aware network with
the same configurations and train for 2000 epochs.
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Table 1. Performance (Dice/%) of different segmentation methods on MOTS bench-
mark. The best two results are highlighted in bold. We also show the number of training
and testing images ("train"/"test") in the bracket after each task name.

Method
Liver

(104/27)
Kidneys
(168/42)

Hepatic Vessels
(242/61)

Organ Tumor Organ Tumor Organ Tumor
1) Baseline 93.26 60.04 90.32 69.16 58.79 72.63
2) MT 94.81 64.32 94.06 76.44 64.34 74.05
3) w/o LMSE 94.77 62.05 93.89 77.68 63.12 76.77
4) DoDNet [21] 96.87 65.47 96.52 77.59 62.42 73.39
5) Ours 95.78 68.07 94.74 78.46 64.30 76.48

Method
Pancreas
(224/57)

Colon
(100/26)

Lungs
(50/13)

Spleen
(32/9) Average

Organ Tumor Tumor Tumor Organ
1) Baseline 73.16 54.88 42.66 63.62 92.01 70.05
2) MT 78.15 56.01 41.58 66.15 93.94 73.08
3) w/o LMSE 77.44 56.98 46.59 69.88 92.76 73.81
4) DoDNet [21] 82.64 60.45 51.55 71.25 93.91 75.64
5) Ours 81.51 62.15 49.66 75.52 94.59 76.48

3.3 Evaluation

We have evaluated the proposed method on MOTS benchmark [21] and provided
a thorough comparison with several partially-labeled segmentation methods. The
comparison includes: 1) Baseline: a SwinUNETR segmentation network with dy-
namic segmentation heads; 2) MT: a mean teacher framework, which does not
involve the identification of latent classes compared with our method; 3) w/o
LMSE : our framework without the MSE loss on ambiguous classes; 4) DoD-
Net [21]: current state-of-the-art method on MOTS benchmark, and 5) Ours:
our proposed framework with latent class mining. It should be noted that DoD-
Net employs different training and post-processing strategies from ours, but the
quantitative comparison could prove the capacity and potential of our method
on the MOTS benchmark.

The quantitative results on the test set of the MOTS benchmark have been
shown in Table 1. It can be seen that our proposed method outperforms other al-
ternatives in the multi-organ and tumor segmentation tasks, which demonstrates
the effectiveness of the proposed training diagram. Overall, the introduction of
latent class mining and the utilization of ambiguous classes could provide mod-
erate performance gain in all kinds of organs or tumors. It should be noted that
the performance gain in spleen segmentation is more significant, as the training
data is insufficient (only 32 cases). Another interesting observation is that the
segmentation performance in tumors, such as lung tumors, has also been fur-
ther improved. Since we utilize BiomedCLIP text embeddings as task encoding
for segmentation, the relations between different kinds of tumors may benefit
the overall performance in tumor segmentation. Another plausible explanation
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Fig. 2. Visualization of segmentation results of different algorithms on the MOTS
dataset.

is that the segmentation model benefits unlabeled lung tumors in liver cancer
scans, as lung cancer is a common metastasis of liver tumors [8, 16].

In addition, we build up two additional experimental settings to investigate
the effectiveness of latent classes and ambiguous classes in the images, which are
shown as No.2 and No.3 in the table. The mean teacher framework does not dis-
tinguish latent classes or ambiguous classes and regularizes the predictions of all
classes with consistency loss. This naive implementation could further mislead
the model when the student model has not been well supervised. By utilizing
the ROI-aware network, our method could identify latent classes and apply CE
loss on student predictions and "sharpened" pseudo labels, which could reduce
the entropy in student’s prediction and promote faster convergence. Thus, when
comparing experiments No.2 and No.4 experiments, our method could achieve a
better performance compared to the vanilla mean teacher. On the other hand,
model performance could still benefit ambiguous classes as well. Although the
existence of ambiguous classes is not clear, the consistency regularization of stu-
dents and teachers could still force the model to learn a robust segmentation,
which improves the overall quality of segmentation as well. Thus, in No.3 ex-
periment, the segmentation performance deteriorates when the consistency loss
LMSE in ambiguous classes is removed.

In Fig. 2, we have visualized the segmentation comparison of our proposed
segmentation method and other alternatives. The qualitative results in Fig. 2
indicate that our method could achieve more accurate segmentation with better
quality.
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4 Conclusion

In this paper, we have presented a novel framework that leverages latent classes
in the partially labeled medical images for training the segmentation model.
Our method utilizes existing but unlabeled ROIs in the input images to further
supervise the segmentation training in an ROI-aware manner. The ROI-aware
network makes possible the accurate and robust identification of latent classes in
the input images, while the teacher-student framework is optimized by applying
different constraints of the predictions based on ROI existence. Experimental
results on the MOTS benchmark demonstrate the effectiveness of our proposed
method. Since the development of future foundation models in medical image
segmentation could be demanding in annotated data, our approach has great
potential to accelerate the development of medical image segmentation and pro-
mote the success of the universal foundation model in medical image analysis.
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