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Abstract. Diffusion models have advanced unsupervised anomaly de-
tection by improving the transformation of pathological images into
pseudo-healthy equivalents. Nonetheless, standard approaches may com-
promise critical information during pathology removal, leading to restora-
tions that do not align with unaffected regions in the original scans.
Such discrepancies can inadvertently increase false positive rates and
reduce specificity, complicating radiological evaluations. This paper in-
troduces Temporal Harmonization for Optimal Restoration (THOR),
which refines the reverse diffusion process by integrating implicit guid-
ance through intermediate masks. THOR aims to preserve the integrity
of healthy tissue details in reconstructed images, ensuring fidelity to
the original scan in areas unaffected by pathology. Comparative eval-
uations reveal that THOR surpasses existing diffusion-based methods
in retaining detail and precision in image restoration and detecting and
segmenting anomalies in brain MRIs and wrist X-rays. Code: https:
//github.com/compai-lab/2024-miccai-bercea-thor.git.
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Fig. 1: Denoising diffusion probabilistic models (DDPMs) trend towards a gen-
eralized healthy reference, diverging from nuanced details in the original image.
THOR aims for restoration close to the original, within healthy limits.

https://github.com/compai-lab/2024-miccai-bercea-thor.git
https://github.com/compai-lab/2024-miccai-bercea-thor.git
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1 Introduction

Robust and accurate anomaly detection is vital for early diagnosis and effective
treatment, especially in the face of rare and diverse pathologies. The complexity
and variability inherent in medical conditions present substantial challenges to
conventional diagnostic methods anchored in supervised learning [8,16]. These
methods depend heavily on extensive, annotated datasets, which are difficult
to obtain for rare conditions, limiting the scope and flexibility of diagnostic
tools. In response, unsupervised learning has emerged as a viable alternative,
capable of detecting anomalies across a broad spectrum without the need for
explicit labels [6,17,11,12]. Among unsupervised techniques, denoising diffusion
probabilistic models (DDPMs) [7] have shown substantial promise in enhancing
the precision and efficiency of anomaly detection. By adding and subsequently
removing noise, DDPMs transform pathological inputs into pseudo-healthy out-
puts, demonstrating impressive generative potential. Nonetheless, this noise-
dependent process can result in significant loss of information, leading restored
images to deviate from their original state, including in regions unaffected by
pathology [4]. Such deviations risk increasing false positives and decreasing speci-
ficity, further complicating the diagnostic process.

To overcome the limitations inherent in DDPMs, more sophisticated models
have been developed. AnoDDPM proposes to use Simplex noise, which allows
the use of lower noise levels [14]. Conditional diffusion models blend the ca-
pabilities of autoencoders with diffusion techniques to incorporating semantic
information such as tissue intensity into the de-noising process [3]. Patch-based
DDPMs (pDDPMs) extend these advancements by applying the diffusion pro-
cess to localized patches of the image, using adjacent areas as contextual anchors
in a sliding-window technique [2]. AutoDDPMs build upon this foundation with
a unique approach that involves masking, stitching, and re-sampling, utilizing
dual de-noising processes at different levels of noise to seamlessly integrate con-
text into the reconstructions [4]. While these innovations represent substantial
progress, they also introduce complexities. The task of determining an optimal
patch size that can adapt to the multiple scales of diseases is challenging due to
the diversity of pathological presentations. Additionally, the complexity of or-
chestrating dual de-noising processes across different noise levels requires precise
calibration. These challenges could potentially limit their practicability.

Diffusion models enhanced with classifier guidance use weakly supervised
classifiers for anomaly detection, leveraging gradients to refine the identification
of anomalous regions [13]. However, the effectiveness of this approach depends
on the accuracy of classifiers, potentially limiting its capability to detect diseases
independently by biasing it towards known pathologies.

In this work, we introduce THOR (Temporal Harmonization for Optimal
Restoration), a novel approach designed to enhance unsupervised anomaly detec-
tion in medical imaging, as illustrated in Figure 1. THOR incorporates implicit
guidance into diffusion models through the use of intermediate masks, aiming to
preserve the original image context while achieving accurate anomaly detection
and segmentation. Our key contributions are as follows:
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• The development of THOR, leveraging implicit guidance within diffusion
models to facilitate optimal image restorations and improve the accuracy of
anomaly segmentation.

• The application of THOR to two challenging medical datasets, where it
demonstrates its capability in accurately segmenting stroke lesions on brain
scans and localizing pathology in pediatric wrist X-rays, thereby enhancing
performance in essential diagnostic tasks.

• An analysis of the sensitivity of critical hyper-parameters such as different
noise types and levels.

2 Background

2.1 Anomaly Detection Setup

In medical imaging anomaly detection, the objective is to detect deviations from
normal anatomical structures without explicit pathological labels. We define X
as the domain of all medical images, where each image x ∈ X includes regions
of both normal and abnormal tissue. The aim is to assign an anomaly score S
to each pixel (or voxel), using a function f : X → S.

Considering a dataset of medical images xN
i=1 for training, these images are

presumed to represent a healthy tissue distribution, denoted as P (x). The chal-
lenge lies in accurately modeling P (x). By doing so, we can project any input
image into the P (x) space, creating a pseudo-healthy reconstruction. If an input
image has pathology, this method produces a version where pathological fea-
tures are replaced with those typical of healthy tissue according to P (x). This
approach enables anomaly detection by contrasting the original image with its
pseudo-healthy counterpart to identify deviations.

2.2 Denoising Diffusion Probabilistic Models (DDPMs)

The forward diffusion process in DDPMs [7] transforms the original data x0

into a sequence of increasingly noisy versions x1, x2, . . . , xT . This process can
be understood as an approximate posterior: q(xt|x0) = N (xt;

√
αtx0, (1−αt)I),

where αt =
∏t

s=1(1−βs) with βt representing the variance schedule that dictates
the noise level at each step. Using the reparameterization trick, we can sample
xt directly from x0:

xt =
√
αtx0 +

√
1− αtϵ, with ϵ ∼ N (0, I). (1)

The reverse diffusion process aims to reconstruct the original data x0 from the
noisy data xT . This is achieved by learning a parameterized model pθ(xt−1|xt)
that approximates the reverse of the forward process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)
2I) (2)

The mean µθ(xt, t) and variance σθ(xt, t)
2 are learned by minimizing the vari-

ational lower bound. During sampling, the reverse process starts with a sample
from the Gaussian prior p(xT ) and iteratively applies pθ(xt−1|xt) to generate
samples that resemble the original data distribution P (x).
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Fig. 2: The top row displays the traditional DDPM denoising sequence, progres-
sively reducing noise to enhance image features. In contrast, the middle row
features THOR, which adapts the reverse process using unsupervised intermedi-
ate masks for ’harmonization’ (marked by orange boxes)—maintaining normal
tissue integrity while reducing anomalies. The bottom rows shows the deter-
ministic pathological reverse process, gradually revealing anomalies. The ground
truth (GT) image where the anomaly is clearly delineated is provided by experts.

3 Method: THOR

THOR advances the de-noising process in DDPMs, offering guidance during
inference through the application of implicit intermediate masks, without ne-
cessitating retraining. Typically, DDPMs necessitate high noise levels (T ) to
effectively obscure anomalies, a practice that can compromise the integrity of
non-pathological tissue details. Such an approach may result in the loss of crit-
ical anatomical information, thereby elevating the potential for false positives.
The innovation of THOR lies in its ability to guide the restoration process by
strategically reintegrating healthy tissue information, a technique we refer to as
"harmonization." This method starts at the same elevated noise levels but di-
verges by using implicit intermediate masks to inform the denoising trajectory.
Such guidance aims to selectively restore the image, focusing on preserving the
fidelity of non-pathological regions while reducing the anomalies. Details of our
procedural approach are delineated in Figure 2.

Implicit Guidance via Intermediate Masks. Intermediate masks play an es-
sential role in the unsupervised "harmonization" process of THOR. These masks
critically compare the predictive reconstructions xt

0 with the actual input im-
age xinput

0 , highlighting discrepancies that indicate anomalies and distinguishing
regions that are likely healthy. Intermediate masks m combine residual differ-



Diffusion Models with Implicit Guidance 5

ences with the Learned Perceptual Image Patch Similarity (LPIPS) metric [15],
enhancing the identification of subtle pathological changes [6]:

m(x, y) = |x− y| · SLPIPS(x, y). (3)

To avoid incorporating anomalous regions in the denoising process, we nor-
malize the values of m between 0 and 1 and apply morphological operations,
specifically a sequence of closing followed by dilation (denoted as cd).

These intermediate masks are then utilized in the "harmonization" process to
adjust the interpolation between the pseudo-healthy predictions and the actual
inputs. This adjustment aims to producing reconstructions that not only closely
resemble the original images but also conform to the healthy profile:

xt = cd(m(xt
0, x

input
0 )) · xprediction

0 + (1− cd(m(xt
0, x

input
0 ))) · xinput

0 . (4)

The final anomaly score, S, is calculated using the harmonic mean of the
intermediate masks at the different harmonization timesteps:

S = n

/ ∑
t∈harmonization steps

1

m(xt
0, x

input
0 )

, (5)

where n is the total number of harmonization steps.

4 Experiments

4.1 Ischemic Stroke Lesion Segmentation in Brain MRI

This experiment evaluates the effectiveness of THOR and other recent diffusion-
based anomaly detection methods in segmenting ischemic stroke lesions. Stroke
represents a major cause of disability and mortality worldwide, with its early
and accurate detection being paramount for effective intervention and treatment
planning. The variability in stroke lesions, in terms of size, location, and affected
brain tissue, adds layers of complexity to their identification in neuroimaging.

Datasets. The IXI [1] dataset include 581 healthy T1-weighted MRI scans (465
for training, 58 for validation, and 58 for testing). ATLAS 2.0 [9], comprising 655
T1-weighted MRI scans with expert-segmented lesion masks, is used primarily
for testing. Out of 655 scans, 217 do not contain visible pathologies and are
used to augment the healthy training set. All scans come from different patients,
ensuring no overlap between the training and evaluation sets. Anomalies were
stratified into small (< 71 pixels), medium, and large (≥ 570 pixels) lesions. We
excluded 20 slices with hypo-intense artifacts that were not annotated to main-
tain data quality. For pre-processing, we selected the mid-axial slices, normalized
all images to the 98th percentile, and pad and resized them to a 128× 128 res-
olution. Lesion segmentation was quantified using the maximum Dice (⌈Dice⌉).
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Table 1: Performance on Brain MRI Stroke Segmentation. THOR, our
proposed method, considerably outperforms other methods (DDPM, AutoD-
DPM, AnoDDPM, pDDPM) across different lesion sizes, marked by the bold
numbers and percentage improvements (▲ x) compared to the best baseline.

N
oi

se Method Pathology ⌈Dice⌉ ↑
Average Small Medium Large

G
au

ss THOR (ours) 20.41 ▲ 20% 9.14 ▲ 103% 26.34 ▲ 19% 41.26 ▼ 5%
DDPM [7] 8.05 ▼ 61% 1.37 ▼ 85% 9.53 ▼ 64% 25.65 ▼ 38%
AutoDDPM [4] 16.95 ▼ 17% 4.55 ▼ 50% 22.07 ▼ 16% 43.47 ▲ 5%

Si
m

pl
ex THOR (ours) 29.74 ▲ 33% 11.54 ▲ 44% 39.20 ▲ 30% 63.64 ▲ 34%

AnoDDPM [14] 18.07 ▼ 39% 4.82 ▼ 58% 23.45 ▼ 40% 46.65 ▼ 27%
pDDPM [2] 22.28 ▼ 25% 8.02 ▼ 31% 30.16 ▼ 23% 47.66 ▼ 25%

Fig. 3: Anomaly detection in brain MRI scans processed by THOR using Gaus-
sian (G) and Simplex (S) noise. From left to right, the lesions increase in size,
with the smallest representing a challenging case.

Results. Table 1 shows quantitative results and explores two key diffusion noise
scenarios: Gaussian and Simplex. This examination is vital for assessing the
performance of THOR in comparison with leading diffusion models. THOR is
proficient with both types of noise, illustrating its broad applicability.

Gaussian noise is the conventional choice for DDPMs but introduces chal-
lenges in anomaly detection. Due to the partial denoising strategy employed for
anomaly detection, a high noise level (here T=350) is essential to effectively
conceal anomalies [14]. Yet, deploying Gaussian noise at such high iterations fre-
quently results in false positives due to inaccuracies in restoring healthy tissue.
This limitation is reflected in the diminished segmentation scores for DDPM.
Conversely, our harmonization process navigates the de-noising towards more
precise restorations. Consequently, THOR addresses the challenge of false pos-
itives and significantly refines the accuracy of anomaly segmentation, as evi-
denced both numerically in Table 1 and visually in Figure 2 and Figure 3.

Simplex noise provides a notable advantage with its coarse noise patterns, al-
lowing for the de-noising process to commence at lower levels (T=250) as demon-
strated in [14]. This characteristic is beneficial, preserving more of the original
image context and laying a stronger groundwork for restoration. The utility of
Simplex noise becomes apparent when observing the improved performance of
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Fig. 4: Noise Level Ablation. THOR outperforms the diffusion counterparts
under both Gaussian and Simplex noise types across different noise levels T .

models like AnoDDPM, which exhibit significant enhancements over the tradi-
tional DDPM. Leveraging the capability of Simplex noise, THOR advances the
restoration process further. Its harmonization process meticulously refines the
output, ensuring restorations more faithfully represent the original healthy tis-
sue and thereby outperforming AnoDDPM and similar models (see Table 1).

Sensitivity analysis of noise levels T is shown in Figure 4. Increasing noise
levels in the Gaussian setting enhances the detection of larger lesions, highlight-
ing the role of higher noise in their effective masking. In contrast, performance
abruptly declines with elevated Simplex noise levels. THOR excels across dif-
ferent noise intensities, showcasing particular robustness at higher levels. This
robustness minimizes the need for finely tuned noise adjustments for specific
applications or anomaly sizes, underscoring THOR’s adaptability and efficacy.

4.2 Anomaly Localization in Pediatric Wrist X-rays

In this section, we evaluate the localization of anomalies in pediatric wrist X-rays.
Bone fractures are notably prevalent in children, with their detection through
X-rays being a critical step for timely medical interventions. In this experiment,
we opted for Gaussian noise due to its broader applicability. Simplex noise, al-
though not specifically designed for brain MRI, was ineffective in wrist X-ray
experiments. The DDPMs utilizing Simplex noise did not adequately address
visible anomalies such as fractures or metal implants, as detailed in the Supple-
mentary Material. This outcome is consistent with findings from other studies
on brain MRI [5], where DDPMs trained with Simplex noise failed to detect
anomalies outside the targeted distribution of coarse intensity-based patterns.

Dataset. We utilize the comprehensive GRAZPEDWRI-DX dataset [10], en-
compassing 10,643 (L1,R1) X-rays of pediatric wrist injuries from 6,091 patients.
It includes a wide array of anomalies annotated with bounding boxes by certified
radiologists. This includes bone anomalies (BA), foreign bodies (FB), fractures
(Frac.), metal implants, periosteal reactions (PR), and soft tissue conditions
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Table 2: Anomaly detection and localization results in pediatric wrist X-rays.
N

oi
se Method BA FB Frac. Metal Pr. Soft

Recall F1 Recall F1 Recall F1 Recall F1 Recall F1 Recall F1

G
au

ss THOR (ours) 83.33 23.76 75.00 25.00 75.39 16.46 99.76 73.76 76.42 16.64 26.32 10.77
DDPM [7] 32.22 6.35 75.00 29.83 28.53 5.10 86.47 39.66 52.25 9.79 23.68 8.89
AutoDDPM [4] 63.89 23.93 75.00 58.33 45.56 15.84 95.89 72.05 62.29 29.00 31.58 16.45

Fig. 5: Anomaly detection in pediatric wrist X-rays processed by THOR us-
ing Gaussian noise. False positives arise from unannotated indirect pathological
changes like unnatural bone positions following fractures or the presence of casts.

(Soft). We report the recall and F1 scores as detailed in [6].

Results. Table 2 and Figure 5 summarize quantitative and qualitative results.
THOR outperforms SOTA diffusion models, considerably improving the number
of anomalies detected by up to 65% in case of fractures. The applicaiton of wrist
X-ray anomaly detection poses some challenges for unsupervised methods such
as the rise of false positives due to unannotated indirect pathological changes
shown in Figure 5. These are correctly identified as anomalies, but not annotated
by the radiologists. Furthermore, some conditions like soft tissue anomalies are
subtle and remain difficult to spot on X-rays and small resolutions.

5 Conclusion

In this study, we introduced Temporal Harmonization for Optimal Restoration
(THOR), a novel approach that enhances the utility of diffusion models for
unsupervised anomaly detection in medical imaging. Our key innovation lies
in refining the reverse diffusion process by incorporating intermediate masks,
which implicitly guide the generation of pseudo-healthy restorations and ensure
the preservation of healthy tissue integrity. We rigorously tested THOR in two
challenging scenarios—detecting stroke lesions in brain MRIs and identifying
pediatric wrist injuries in X-rays. Our results show that THOR considerably
outperforms state-of-the-art diffusion-based methods.

Despite these advancements, unsupervised anomaly detection still faces chal-
lenges, including a higher rate of false positives from unannotated, indirect
pathological changes, and difficulties in detecting subtle or small anomalies.
While our method shows notable improvements for small lesions, it also high-
lights the need for enhanced precision in these areas.
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Future work will focus on developing clinically relevant metrics to evalu-
ate the detection accuracy of (small) lesions, conducting comprehensive clinical
validation, optimizing the computation of intermediate masks, and expanding
THOR’s application to various pathologies and organs. These efforts aim to
enhance THOR’s diagnostic accuracy and broaden its clinical applicability.
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